Kernel Spectral Clustering for Big Data Networks

被引:49
|
作者
Mall, Raghvendra [1 ]
Langone, Rocco [1 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT SCD SISTA, B-3001 Louvain, Belgium
关键词
kernel spectral clustering; out-of-sample extensions; sampling graphs; angular similarity; COMMUNITY STRUCTURE;
D O I
10.3390/e15051567
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows the feasibility of utilizing the Kernel Spectral Clustering (KSC) method for the purpose of community detection in big data networks. KSC employs a primal-dual framework to construct a model. It results in a powerful property of effectively inferring the community affiliation for out-of-sample extensions. The original large kernel matrix cannot fitinto memory. Therefore, we select a smaller subgraph that preserves the overall community structure to construct the model. It makes use of the out-of-sample extension property for community membership of the unseen nodes. We provide a novel memory-and computationally efficient model selection procedure based on angular similarity in the eigenspace. We demonstrate the effectiveness of KSC on large scale synthetic networks and real world networks like the YouTube network, a road network of California and the Livejournal network. These networks contain millions of nodes and several million edges.
引用
收藏
页码:1567 / 1586
页数:20
相关论文
共 50 条
  • [31] Sparse kernel spectral clustering models for large-scale data analysis
    Alzate, Carlos
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2011, 74 (09) : 1382 - 1390
  • [32] Boosting Spectral Clustering on Incomplete Data via Kernel Correction and Affinity Learning
    Yu, Fangchen
    Zhao, Runze
    Shi, Zhan
    Lu, Yiwen
    Fan, Jicong
    Zeng, Yicheng
    Mao, Jianfeng
    Li, Wenye
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [33] Incremental kernel spectral clustering for online learning of non-stationary data
    Langone, Rocco
    Agudelo, Oscar Mauricio
    De Moor, Bart
    Suykens, Johan A. K.
    NEUROCOMPUTING, 2014, 139 : 246 - 260
  • [34] Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Langone, Rocco
    Suykens, Johan A. K.
    INFORMATION FUSION, 2018, 44 : 46 - 56
  • [35] Extracting Kernel Dataset from Big Sensory Data in Wireless Sensor Networks
    Cheng, Siyao
    Cai, Zhipeng
    Li, Jianzhong
    Gao, Hong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (04) : 813 - 827
  • [36] Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    PLOS ONE, 2014, 9 (06):
  • [37] Big Data Clustering: A Review
    Shirkhorshidi, Ali Seyed
    Aghabozorgi, Saeed
    Teh, Ying Wah
    Herawan, Tutut
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT V, 2014, 8583 : 707 - 720
  • [38] MapReduce Clustering for Big Data
    Ghattas, Badih
    Pinto, Antoine
    Diao, Sambou
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5116 - 5124
  • [39] Big Data and Clustering Algorithms
    Ajin, V. W.
    Kumar, Lekshmy D.
    2016 INTERNATIONAL CONFERENCE ON RESEARCH ADVANCES IN INTEGRATED NAVIGATION SYSTEMS (RAINS), 2016,
  • [40] Strategies for Big Data Clustering
    Kurasova, Olga
    Marcinkevicius, Virginijus
    Medvedev, Viktor
    Rapecka, Aurimas
    Stefanovic, Pavel
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 740 - 747