ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS

被引:0
|
作者
Liu, Muhuo [1 ,2 ,3 ]
Liu, Bolian [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
[3] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
来源
关键词
Signless Laplacian matrix; Laplacian matrix; Incidence energy; ENERGY; INDEX; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and a real number alpha (alpha not equal 0, 1), the graph invariant S-alpha(G) is the sum of the alpha th power of the signless Laplacian eigenvalues of G. Let IE(G) denote the incidence energy of G, i.e., IE(G) = S-1/2 (G). This note presents some properties and bounds for S-alpha(G) and IE(G).
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [41] A note on the sum of the two largest signless Laplacian eigenvalues
    Zheng, Yirong
    ARS COMBINATORIA, 2020, 148 : 183 - 191
  • [42] On the sum of powers of the Aα-eigenvalues of graphs
    Lin, Zhen
    MATHEMATICAL MODELLING AND CONTROL, 2022, 2 (02): : 55 - 64
  • [43] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [44] Proof of conjectures on the distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 100 - 115
  • [45] Correction to: Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 1551 - 1552
  • [46] Bounds for peripheral distance signless Laplacian eigenvalues of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    Ramane, H. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [47] On eigenvalues of the reciprocal distance signless Laplacian matrix of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Alizadeh, Yaser
    Pirzada, Shariefuddin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [48] Edge perturbation on graphs with clusters: Adjacency, Laplacian and signless Laplacian eigenvalues
    Cardoso, Domingos M.
    Rojo, Oscar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 512 : 113 - 128
  • [49] Bounding the Sum of Powers of Normalized Laplacian Eigenvalues of Graphs through Majorization Methods
    Bianchi, Monica
    Cornaro, Alessandra
    Luis Palacios, Jose
    Torriero, Anna
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (02) : 707 - 716
  • [50] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)