On the sum of the first two largest signless Laplacian eigenvalues of a graph

被引:0
|
作者
Zhou, Zi-Ming [1 ]
He, Chang-Xiang [1 ]
Shan, Hai-Ying [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
(Signless) Laplacian matrix; (Signless) Laplacian eigenvalues; Sum of (signless) Laplacian eigenvalues;
D O I
10.1016/j.disc.2024.114035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let S2(G) be the sum of the first two largest signless Laplacian eigenvalues of G, and f (G) = e(G) +3 -S2(G). Oliveira, Lima, Rama and Carvalho conjectured that K+1,n-1 (the star graph with an additional edge) is the unique graph with minimum value of f (G) on n vertices. In this paper, we prove this conjecture, which also confirm a conjecture for the upper bound of S2(G) proposed by Ashraf et al. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [2] A note on the sum of the two largest signless Laplacian eigenvalues
    Zheng, Yirong
    ARS COMBINATORIA, 2020, 148 : 183 - 191
  • [3] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467
  • [4] EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES
    Oliveira, Carla Silva
    de Lima, Leonardo
    Rama, Paula
    Carvalho, Paula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 605 - 612
  • [5] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [6] On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph
    Ashraf, Firouzeh
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1314 - 1320
  • [7] Bounds for the Largest Two Eigenvalues of the Signless Laplacian
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2014, 199 (4) : 448 - 455
  • [8] The largest two Laplacian eigenvalues of a graph
    Das, KC
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (06): : 441 - 460
  • [9] On the sum of the two largest Laplacian eigenvalues of trees
    Guan, Mei
    Zhai, Mingqing
    Wu, Yongfeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 7
  • [10] On the sum of the two largest Laplacian eigenvalues of trees
    Mei Guan
    Mingqing Zhai
    Yongfeng Wu
    Journal of Inequalities and Applications, 2014