A note on the sum of the two largest signless Laplacian eigenvalues

被引:0
|
作者
Zheng, Yirong [1 ,2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
Signless Laplacian eigenvalue; sum of signless Laplacian eigenvalue; triangle-free graph; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n with m edges, Ashraf et al. in 2013 conjectured that S-k* (G) <= m ((k+1)(2)) for k = 1, 2,..., n, where S-k*(G) = Sigma(k)(i=1) q(i) and q(1) >= q(2) >= center dot center dot center dot >= q(n) are the signless Laplacian eigenvalues of G. They gave a proof for the conjecture when k = 2, but applied an incorrect key lemma. In this note, we will give a corresponding counterexample to the key lemma. Moreover, we also prove that the conjecture is true for all connected triangle-free graphs when k = 2.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [1] EXTREMAL GRAPHS FOR THE SUM OF THE TWO LARGEST SIGNLESS LAPLACIAN EIGENVALUES
    Oliveira, Carla Silva
    de Lima, Leonardo
    Rama, Paula
    Carvalho, Paula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 605 - 612
  • [2] On the sum of the first two largest signless Laplacian eigenvalues of a graph
    Zhou, Zi-Ming
    He, Chang-Xiang
    Shan, Hai-Ying
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [3] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [4] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [5] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [6] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467
  • [7] Bounds for the Largest Two Eigenvalues of the Signless Laplacian
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2014, 199 (4) : 448 - 455
  • [8] On the sum of the two largest Laplacian eigenvalues of trees
    Guan, Mei
    Zhai, Mingqing
    Wu, Yongfeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 7
  • [9] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [10] On the sum of the two largest Laplacian eigenvalues of trees
    Mei Guan
    Mingqing Zhai
    Yongfeng Wu
    Journal of Inequalities and Applications, 2014