A note on the sum of the two largest signless Laplacian eigenvalues

被引:0
|
作者
Zheng, Yirong [1 ,2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
Signless Laplacian eigenvalue; sum of signless Laplacian eigenvalue; triangle-free graph; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n with m edges, Ashraf et al. in 2013 conjectured that S-k* (G) <= m ((k+1)(2)) for k = 1, 2,..., n, where S-k*(G) = Sigma(k)(i=1) q(i) and q(1) >= q(2) >= center dot center dot center dot >= q(n) are the signless Laplacian eigenvalues of G. They gave a proof for the conjecture when k = 2, but applied an incorrect key lemma. In this note, we will give a corresponding counterexample to the key lemma. Moreover, we also prove that the conjecture is true for all connected triangle-free graphs when k = 2.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [41] A note on graphs whose signless Laplacian has three distinct eigenvalues
    Ayoobi, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (06): : 701 - 706
  • [42] On the sum of the distance signless Laplacian eigenvalues of a graph and some inequalities involving them
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Paul, S.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (01)
  • [43] ON THE SUM OF THE K LARGEST ABSOLUTE VALUES OF LAPLACIAN EIGENVALUES OF DIGRAPHS
    Yang, Xiuwen
    Liu, Xiaogang
    Wang, Ligong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 409 - 422
  • [44] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Ganie, Hilal A.
    Pirzada, S.
    Trevisan, Vilmar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
  • [45] Computing the sum of k largest Laplacian eigenvalues of tricyclic graphs
    Kumar, Pawan
    Merajuddin, S.
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 14 - 18
  • [46] On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number
    Hilal A. Ganie
    S. Pirzada
    Vilmar Trevisan
    Mediterranean Journal of Mathematics, 2021, 18
  • [47] The maximum clique and the signless Laplacian eigenvalues
    Jianping Liu
    Bolian Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 1233 - 1240
  • [48] ON THE MAIN SIGNLESS LAPLACIAN EIGENVALUES OF A GRAPH
    Deng, Hanyuan
    Huang, He
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 381 - 393
  • [49] MAJORIZATION BOUNDS FOR SIGNLESS LAPLACIAN EIGENVALUES
    Maden, A. Dilek
    Cevik, A. Sinan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 781 - 794
  • [50] On the second largest eigenvalue of the signless Laplacian
    de Lima, Leonardo Silva
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1215 - 1222