A note on the sum of the two largest signless Laplacian eigenvalues

被引:0
|
作者
Zheng, Yirong [1 ,2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
Signless Laplacian eigenvalue; sum of signless Laplacian eigenvalue; triangle-free graph; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n with m edges, Ashraf et al. in 2013 conjectured that S-k* (G) <= m ((k+1)(2)) for k = 1, 2,..., n, where S-k*(G) = Sigma(k)(i=1) q(i) and q(1) >= q(2) >= center dot center dot center dot >= q(n) are the signless Laplacian eigenvalues of G. They gave a proof for the conjecture when k = 2, but applied an incorrect key lemma. In this note, we will give a corresponding counterexample to the key lemma. Moreover, we also prove that the conjecture is true for all connected triangle-free graphs when k = 2.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [11] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    Journal of Mathematical Research with Applications, 2014, 34 (06) : 647 - 654
  • [12] On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph
    Ashraf, Firouzeh
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07): : 1314 - 1320
  • [13] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [14] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [15] ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Liu, Muhuo
    Liu, Bolian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 527 - 536
  • [16] On the sum of the two largest Laplacian eigenvalues of unicyclic graphs
    Zheng, Yirong
    Chang, An
    Li, Jianxi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [17] TREES WITH MAXIMUM SUM OF THE TWO LARGEST LAPLACIAN EIGENVALUES
    Zheng, Yirong
    Li, Jianxi
    Chang, Sarula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 357 - 366
  • [18] On the sum of the two largest Laplacian eigenvalues of unicyclic graphs
    Yirong Zheng
    An Chang
    Jianxi Li
    Journal of Inequalities and Applications, 2015
  • [19] On the sum of powers of the signless Laplacian eigenvalues of graphs
    Cui, Shu-Yu
    Tian, Gui-Xian
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2012, 81 : 243 - 255
  • [20] The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph
    Hu, Shenglong
    Qi, Liqun
    Xie, Jinshan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 1 - 27