A note on the sum of the two largest signless Laplacian eigenvalues

被引:0
|
作者
Zheng, Yirong [1 ,2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
[2] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
关键词
Signless Laplacian eigenvalue; sum of signless Laplacian eigenvalue; triangle-free graph; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n with m edges, Ashraf et al. in 2013 conjectured that S-k* (G) <= m ((k+1)(2)) for k = 1, 2,..., n, where S-k*(G) = Sigma(k)(i=1) q(i) and q(1) >= q(2) >= center dot center dot center dot >= q(n) are the signless Laplacian eigenvalues of G. They gave a proof for the conjecture when k = 2, but applied an incorrect key lemma. In this note, we will give a corresponding counterexample to the key lemma. Moreover, we also prove that the conjecture is true for all connected triangle-free graphs when k = 2.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条