ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS

被引:0
|
作者
Liu, Muhuo [1 ,2 ,3 ]
Liu, Bolian [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
[3] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
来源
关键词
Signless Laplacian matrix; Laplacian matrix; Incidence energy; ENERGY; INDEX; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and a real number alpha (alpha not equal 0, 1), the graph invariant S-alpha(G) is the sum of the alpha th power of the signless Laplacian eigenvalues of G. Let IE(G) denote the incidence energy of G, i.e., IE(G) = S-1/2 (G). This note presents some properties and bounds for S-alpha(G) and IE(G).
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [21] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [22] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713
  • [23] Signless Laplacian eigenvalues and circumference of graphs
    Wang, JianFeng
    Belardo, Francesco
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1610 - 1617
  • [24] A note on the signless Laplacian eigenvalues of graphs
    Wang, Jianfeng
    Belardo, Francesco
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2585 - 2590
  • [25] Distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Chandra
    Lin, Huiqiu
    Guo, Jiming
    FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (04) : 693 - 713
  • [26] Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
    Milovanovic, Igor
    Milovanovic, Emina
    Matejic, Marjan
    Altindag, S. B. Bozkurt
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 259 - 271
  • [27] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [28] On Sum of Powers of Normalized Laplacian Eigenvalues and Resistance Distances of Graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    SSRN, 2022,
  • [29] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467
  • [30] On sum of powers of normalized Laplacian eigenvalues and resistance distances of graphs
    Sun, Wenwen
    Chen, Haiyan
    Hu, Mingying
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 179 - 186