ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS

被引:0
|
作者
Liu, Muhuo [1 ,2 ,3 ]
Liu, Bolian [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] S China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
[3] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
来源
关键词
Signless Laplacian matrix; Laplacian matrix; Incidence energy; ENERGY; INDEX; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and a real number alpha (alpha not equal 0, 1), the graph invariant S-alpha(G) is the sum of the alpha th power of the signless Laplacian eigenvalues of G. Let IE(G) denote the incidence energy of G, i.e., IE(G) = S-1/2 (G). This note presents some properties and bounds for S-alpha(G) and IE(G).
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [31] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [32] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [33] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [34] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [35] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Milica Anđelić
    Tamara Koledin
    Zoran Stanić
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 467 - 476
  • [36] Bounds on Signless Laplacian Eigenvalues of Hamiltonian Graphs
    Andelic, Milica
    Koledin, Tamara
    Stanic, Zoran
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (03): : 467 - 476
  • [37] Upper bounds on the (signless) Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    Shan, Haiying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 334 - 341
  • [38] On the multiplicity of distance signless Laplacian eigenvalues of graphs
    Xue, Jie
    Liu, Shuting
    Shu, Jinlong
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (11): : 2276 - 2288
  • [39] On graphs with three distinct signless Laplacian eigenvalues
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1451 - 1466
  • [40] On the sum of Laplacian eigenvalues of graphs
    Haemers, W. H.
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) : 2214 - 2221