Adaptive kernel smoothing regression for spatio-temporal environmental datasets

被引:3
|
作者
Pouzols, Federico Montesino [1 ,5 ]
Lendasse, Amaury [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Bioctr 3, Dept Biosci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Adapt Informat Res Ctr, Sch Sci & Technol, Espoo, Finland
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
[5] Univ Helsinki, Fac Biol & Environm Sci, Biodivers Conservat Informat Grp, Ctr Excellence Metapopulat Biol,Dept Biosci, FI-00014 Helsinki, Finland
关键词
Kernel smoothing regression; Adaptive regression; Vector quantization; Spatio-temporal models; Environmental applications; Evolving intelligent systems; ONLINE; IDENTIFICATION; MODELS;
D O I
10.1016/j.neucom.2012.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for performing kernel smoothing regression in an incremental, adaptive manner is described. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The approach proposed is to apply kernel smoothing regression in an incremental estimation of the (evolving) probability distribution of the incoming data stream rather than the whole sequence of observations. The method is illustrated on publicly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [1] Bayesian hierarchical spatio-temporal smoothing for very large datasets
    Katzfuss, Matthias
    Cressie, Noel
    [J]. ENVIRONMETRICS, 2012, 23 (01) : 94 - 107
  • [2] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [3] Kernel regression in mixed feature spaces for spatio-temporal saliency detection
    Li, Yansheng
    Tan, Yihua
    Yu, Jin-Gang
    Qi, Shengxiang
    Tian, Jinwen
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 135 : 126 - 140
  • [4] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    [J]. JOURNAL OF LOCATION BASED SERVICES, 2024,
  • [5] Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
    Serag, Ahmed
    Aljabar, Paul
    Ball, Gareth
    Counsel, Serena J.
    Boardman, James P.
    Rutherford, Mary A.
    Edwards, A. David
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2012, 59 (03) : 2255 - 2265
  • [6] kernInt: A Kernel Framework for Integrating Supervised and Unsupervised Analyses in Spatio-Temporal Metagenomic Datasets
    Ramon, Elies
    Belanche-Munoz, Lluis
    Molist, Francesc
    Quintanilla, Raquel
    Perez-Enciso, Miguel
    Ramayo-Caldas, Yuliaxis
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [7] A SPATIO-TEMPORAL ATLAS OF NEONATAL DIFFUSION MRI BASED ON KERNEL RIDGE REGRESSION
    Shen, Kaikai
    Fripp, Jurgen
    Pannek, Kerstin
    George, Joanne
    Colditz, Paul
    Boyd, Roslyn
    Rose, Stephen
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 126 - 129
  • [8] A New Non-Separable Kernel for Spatio-Temporal Gaussian Process Regression
    Gallagher, Sean
    Quinn, Anthony
    [J]. 2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [9] A regression strategy for analyzing environmental data generated by spatio-temporal processes
    Steele, BM
    Reddy, SK
    Nemani, RR
    [J]. ECOLOGICAL MODELLING, 2005, 181 (2-3) : 93 - 108
  • [10] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    [J]. STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409