A SPATIO-TEMPORAL ATLAS OF NEONATAL DIFFUSION MRI BASED ON KERNEL RIDGE REGRESSION

被引:0
|
作者
Shen, Kaikai [1 ]
Fripp, Jurgen [1 ]
Pannek, Kerstin [1 ]
George, Joanne [2 ]
Colditz, Paul [3 ]
Boyd, Roslyn [2 ]
Rose, Stephen [1 ]
机构
[1] CSIRO Hlth & Biosecur, Australian eHlth Res Ctr, Canberra, ACT, Australia
[2] Univ Queensland, Sch Med, Queensland Cerebral Palsy & Rehabil Res Ctr, Brisbane, Qld, Australia
[3] Univ Queensland, Ctr Clin Res, Brisbane, Qld, Australia
关键词
spatio-temporal atlas; neonatal neuroimaging; diffusion MRI; fibre orientation distribution; kernel ridge regression; CONSTRAINED SPHERICAL DECONVOLUTION; BRAIN; SEGMENTATION; ORGANIZATION; MATTER;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatio-temporal atlas is a useful tool in imaging studies of neurodevelopment, which characterizes the growth of brain, and allows the monitoring of its development. The imaging of preterm and term born infants provides opportunities to develop a series of spatio-temporal atlases that track the changes during the particular period of neurodevelopment between. The aim of this paper is to develop a spatiot-emporal atlas of diffusion MRI for neonatal brains between 32 to 42 weeks postmenstrual age (PMA). We subdivided the cohort consisting of preterm- and term-born infants according to their PMA at the MRI scan based on a kernel ridge regression, and generated the atlases based on Fibre Orientation Distribution (FOD) reconstruction of the diffusion data.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 50 条
  • [1] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [2] Adaptive kernel smoothing regression for spatio-temporal environmental datasets
    Pouzols, Federico Montesino
    Lendasse, Amaury
    [J]. NEUROCOMPUTING, 2012, 90 : 59 - 65
  • [3] Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression
    Serag, Ahmed
    Aljabar, Paul
    Ball, Gareth
    Counsel, Serena J.
    Boardman, James P.
    Rutherford, Mary A.
    Edwards, A. David
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2012, 59 (03) : 2255 - 2265
  • [4] A spatio-temporal regression model for the analysis of functional MRI data
    Katanoda, K
    Matsuda, Y
    Sugishita, M
    [J]. NEUROIMAGE, 2002, 17 (03) : 1415 - 1428
  • [5] Kernel regression in mixed feature spaces for spatio-temporal saliency detection
    Li, Yansheng
    Tan, Yihua
    Yu, Jin-Gang
    Qi, Shengxiang
    Tian, Jinwen
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 135 : 126 - 140
  • [6] Spatio-temporal graphical modeling with innovations based on multi-scale diffusion kernel
    Chalmond, Bernard
    [J]. SPATIAL STATISTICS, 2014, 7 : 40 - 61
  • [7] A New Non-Separable Kernel for Spatio-Temporal Gaussian Process Regression
    Gallagher, Sean
    Quinn, Anthony
    [J]. 2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [8] Spatio-temporal conjecture for diffusion
    Vainstein, MH
    Morgado, R
    Oliveira, FA
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 357 (01) : 109 - 114
  • [9] Clustering Spatio-temporal Trajectories Based on Kernel Density Estimation
    Zhang, Pengdong
    Deng, Min
    Van de Weghe, Nico
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 298 - 311
  • [10] A spatio-temporal memory based on SOMs with activity diffusion
    Euliano, NR
    Principe, JC
    [J]. KOHONEN MAPS, 1999, : 253 - 265