Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression

被引:221
|
作者
Serag, Ahmed [1 ]
Aljabar, Paul [1 ]
Ball, Gareth [2 ,3 ]
Counsel, Serena J. [2 ,3 ]
Boardman, James P. [2 ,3 ,4 ]
Rutherford, Mary A. [2 ,3 ]
Edwards, A. David [2 ,3 ]
Hajnal, Joseph V. [5 ]
Rueckert, Daniel [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal BioMedIA Grp, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Developing Brain, London, England
[3] Hammersmith Hosp, MRC Clin Sci Ctr, London, England
[4] Royal Infirm Edinburgh NHS Trust, Simpson Ctr Reprod Hlth, Edinburgh, Midlothian, Scotland
[5] Univ London Imperial Coll Sci Technol & Med, Imaging Sci Dept, MRC Clin Sci Ctr, Hammersmith Hosp, London, England
关键词
40; atlas; Spatio-temporal; Multi-modal; Kernel regression; Brain development; Neonatal; AUTOMATIC SEGMENTATION; PROBABILISTIC ATLAS; SPATIAL NORMALIZATION; NEONATAL BRAIN; WHITE-MATTER; INFANT BRAIN; MR-IMAGES; MATURATION; MYELINATION; CHILDHOOD;
D O I
10.1016/j.neuroimage.2011.09.062
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Medical imaging has shown that, during early development, the brain undergoes more changes in size, shape and appearance than at any other time in life. A better understanding of brain development requires a spatio-temporal atlas that characterizes the dynamic changes during this period. In this paper we present an approach for constructing a 4D atlas of the developing brain, between 28 and 44 weeks post-menstrual age at time of scan, using T1 and T2 weighted MR images from 204 premature neonates. The method used for the creation of the average 4D atlas utilizes non-rigid registration between all pairs of images to eliminate bias in the atlas toward any of the original images. In addition, kernel regression is used to produce age-dependent anatomical templates. A novelty in our approach is the use of a time-varying kernel width, to overcome the variations in the distribution of subjects at different ages. This leads to an atlas that retains a consistent level of detail at every time-point. Comparisons between the resulting atlas and atlases constructed using affine and non-rigid registration are presented. The resulting 4D atlas has greater anatomic definition than currently available 4D atlases created using various affine and non-rigid registration approaches, an important factor in improving registrations between the atlas and individual subjects. Also, the resulting 4D atlas can serve as a good representative of the population of interest as it reflects both global and local changes. The atlas is publicly available at www.brain-developmentorg. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2255 / 2265
页数:11
相关论文
共 12 条
  • [1] Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression (vol 59, pg 2255, 2012)
    Serag, Ahmed
    Aljabar, Paul
    Ball, Gareth
    Counsell, Serena J.
    Boardman, James P.
    Rutherford, Mary A.
    Edwards, A. David
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2012, 63 (02) : 998 - 998
  • [2] Adaptive kernel smoothing regression for spatio-temporal environmental datasets
    Pouzols, Federico Montesino
    Lendasse, Amaury
    [J]. NEUROCOMPUTING, 2012, 90 : 59 - 65
  • [3] A SPATIO-TEMPORAL ATLAS OF NEONATAL DIFFUSION MRI BASED ON KERNEL RIDGE REGRESSION
    Shen, Kaikai
    Fripp, Jurgen
    Pannek, Kerstin
    George, Joanne
    Colditz, Paul
    Boyd, Roslyn
    Rose, Stephen
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 126 - 129
  • [4] An H.264 Spatio-temporal Hierarchical Fast Motion Estimation Algorithm for High-Definition Video
    Cheng, Yu-Shin
    Chen, Zong-Yi
    Chang, Pao-Chi
    [J]. ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 880 - +
  • [5] SPATIO-TEMPORAL VIDEO INTERPOLATION AND DENOISING USING MOTION-ASSISTED STEERING KERNEL (MASK) REGRESSION
    Takeda, H.
    van Beek, P.
    Milanfar, P.
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 637 - 640
  • [6] Direction oriented resampling algorithm using spatio-temporal information for high definition display
    Jeon, Gwanggil
    Lee, Joohyun
    Jeong, Jechang
    [J]. 2007 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOLS 1-3, 2007, : 520 - 523
  • [7] RE: SPATIO-TEMPORAL IMAGING CORRELATION (STIC): TECHNICAL NOTES ABOUT STIC TRIGGERING AND CHOOSING BETWEEN POWER DOPPLER OR HIGH-DEFINITION COLOR FLOW
    Martins, Wellington P.
    Welsh, Alec W.
    Falkensammer, Peter
    Raine-Fenning, Nicholas J.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2013, 39 (03): : 549 - 550
  • [8] Towards a 4D Spatio-Temporal Atlas of the Embryonic and Fetal Brain Using a Deep Learning Approach for Groupwise Image Registration
    Bastiaansen, Wietske A. P.
    Rousian, Melek
    Steegers-Theunissen, Regime P. M.
    Niessen, Wiro J.
    Koning, Anton H. J.
    Klein, Stefan
    [J]. BIOMEDICAL IMAGE REGISTRATION (WBIR 2022), 2022, 13386 : 29 - 34
  • [9] Study of the spatio-temporal dynamics of the Ait Daoud ou Ali (Central High Atlas, Morocco) Forest using geospatial techniques
    Hili, Aiman
    Bissour, Rachid
    Jaa, Farid
    Reddad, Hanane
    El Jouhary, Yassine
    [J]. REVISTA DE ESTUDIOS ANDALUCES, 2022, (43) : 208 - 225
  • [10] Interactive interface for spatio-temporal mapping of epileptic human brain using characteristics of high frequency oscillations (HFOs)
    Chaibi, Sahbi
    Mahjoub, Chahira
    Jeannes, Regine Le Bouquin
    Kachouri, Abdennaceur
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85