Adaptive kernel smoothing regression for spatio-temporal environmental datasets

被引:3
|
作者
Pouzols, Federico Montesino [1 ,5 ]
Lendasse, Amaury [2 ,3 ,4 ]
机构
[1] Univ Helsinki, Bioctr 3, Dept Biosci, FI-00014 Helsinki, Finland
[2] Aalto Univ, Dept Informat & Comp Sci, Adapt Informat Res Ctr, Sch Sci & Technol, Espoo, Finland
[3] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[4] Univ Basque Country, Fac Comp Sci, Computat Intelligence Grp, Donostia San Sebastian, Spain
[5] Univ Helsinki, Fac Biol & Environm Sci, Biodivers Conservat Informat Grp, Ctr Excellence Metapopulat Biol,Dept Biosci, FI-00014 Helsinki, Finland
关键词
Kernel smoothing regression; Adaptive regression; Vector quantization; Spatio-temporal models; Environmental applications; Evolving intelligent systems; ONLINE; IDENTIFICATION; MODELS;
D O I
10.1016/j.neucom.2012.02.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method for performing kernel smoothing regression in an incremental, adaptive manner is described. A simple and fast combination of incremental vector quantization with kernel smoothing regression using adaptive bandwidth is shown to be effective for online modeling of environmental datasets. The approach proposed is to apply kernel smoothing regression in an incremental estimation of the (evolving) probability distribution of the incoming data stream rather than the whole sequence of observations. The method is illustrated on publicly available datasets corresponding to the Tropical Atmosphere Ocean array and the Helsinki Commission hydrographic database for the Baltic Sea. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 50 条
  • [21] Modelling spatio-temporal environmental data
    Rasinmäki, J
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [22] Spatio-temporal pattern of two common cancers among Iranian women: An adaptive smoothing model
    Raei, Mehdi
    Schmid, Volker
    Moayyed, Majid
    Mahaki, Behzad
    [J]. JOURNAL OF BUON, 2019, 24 (03): : 1268 - 1275
  • [23] Spatio-Temporal Reflectance Fusion Based on 3D Steering Kernel Regression Techniques
    Zhuo, Guohao
    Wu, Bo
    Zhu, Xinran
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2018, 43 (04): : 563 - 570
  • [24] Spatio-temporal functional regression on paleoecological data
    Bar-Hen, Avner
    Bel, Liliane
    Cheddadi, Rachid
    [J]. FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 53 - +
  • [25] Spatio-temporal functional regression on paleoecological data
    Bel, Liliane
    Bar-Hen, Avner
    Petit, Remy
    Cheddadi, Rachid
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (04) : 695 - 704
  • [26] Predicting Ambulance Demand: a Spatio-Temporal Kernel Approach
    Zhou, Zhengyi
    Matteson, David S.
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 2297 - 2303
  • [27] Non-parametric smoothing of spatio-temporal point processes
    Grillenzoni, C
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (01) : 61 - 78
  • [28] Smoothing spatio-temporal data with complex missing data patterns
    Arnone, Eleonora
    Sangalli, Laura M.
    Vicini, Andrea
    [J]. STATISTICAL MODELLING, 2023, 23 (04) : 327 - 356
  • [29] AN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
    White, Gentry
    Sun, Dongchu
    Schootman, Mario
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2007, 2 (01): : 55 - 70
  • [30] Poster: Sustainable Data Management Flow for Spatio-Temporal Datasets
    Nagata, Yoshiteru
    Kohama, Daiki
    Watanabe, Yoshiki
    Katayama, Shin
    Urano, Kenta
    Yonezawa, Takuro
    Kawaguchi, Nobuo
    [J]. PROCEEDINGS OF THE 2024 THE 22ND ANNUAL INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS AND SERVICES, MOBISYS 2024, 2024, : 688 - 689