Predicting Ambulance Demand: a Spatio-Temporal Kernel Approach

被引:33
|
作者
Zhou, Zhengyi [1 ]
Matteson, David S. [2 ]
机构
[1] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
kernel density estimation; non-homogeneous Poisson point process; emergency medical service; DENSITY-ESTIMATION; SPACE; TIME;
D O I
10.1145/2783258.2788570
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting ambulance demand accurately at fine time and location scales is critical for ambulance fleet management and dynamic deployment. Large-scale datasets in this setting typically exhibit complex spatio-temporal dynamics and sparsity at high resolutions. We propose a predictive method using spatio-temporal kernel density estimation (stKDE) to address these challenges, and provide spatial density predictions for ambulance demand in Toronto, Canada as it varies over hourly intervals. Specifically, we weight the spatial kernel of each historical observation by its informativeness to the current predictive task. We construct spatio-temporal weight functions to incorporate various temporal and spatial patterns in ambulance demand, including location-specific seasonalities and short-term serial dependence. This allows us to draw out the most helpful historical data, and exploit spatio-temporal patterns in the data for accurate and fast predictions. We further provide efficient estimation and customizable prediction procedures. stKDE is easy to use and interpret by non-specialized personnel from the emergency medical service industry. It also has significantly higher statistical accuracy than the current industry practice, with a comparable amount of computational expense.
引用
收藏
页码:2297 / 2303
页数:7
相关论文
共 50 条
  • [1] A Spatio-Temporal Point Process Model for Ambulance Demand
    Zhou, Zhengyi
    Matteson, David S.
    Woodard, Dawn B.
    Henderson, Shane G.
    Micheas, Athanasios C.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 6 - 15
  • [2] PREDICTING MELBOURNE AMBULANCE DEMAND USING KERNEL WARPING
    Zhou, Zhengyi
    Matteson, David S.
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (04): : 1977 - 1996
  • [3] An Effective Spatio-Temporal Approach for Predicting Future Semantic Locations
    Abdel-Fatao, Hamidu
    Li, Jiuyong
    Liu, Jixue
    Ashfaqur, Rahman
    [J]. DATABASES THEORY AND APPLICATIONS, (ADC 2016), 2016, 9877 : 283 - 294
  • [4] Predicting the success of entrepreneurial campaigns in crowdfunding: a spatio-temporal approach
    Woods C.
    Yu H.
    Huang H.
    [J]. Journal of Innovation and Entrepreneurship, 9 (1)
  • [5] Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach
    Zhang, Zhijie
    Chen, Dongmei
    Liu, Wenbao
    Racine, Jeffrey S.
    Ong, SengHuat
    Chen, Yue
    Zhao, Genming
    Jiang, Qingwu
    [J]. PLOS ONE, 2011, 6 (03):
  • [6] Spatio-Temporal Context Kernel for Activity Recognition
    Yuan, Fei
    Sahbi, Hichem
    Prinet, Veronique
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 436 - 440
  • [7] SPATIO-TEMPORAL TUBE KERNEL FOR ACTOR RETRIEVAL
    Zhao, Shuji
    Precioso, Frederic
    Cord, Matthieu
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1885 - +
  • [8] Predicting Citywide Passenger Demand via Reinforcement Learning from Spatio-Temporal Dynamics
    Ning, Xiaodong
    Yao, Lina
    Wang, Xianzhi
    Benatallah, Boualem
    Salim, Flora
    Haghighi, Pari Delir
    [J]. PROCEEDINGS OF THE 15TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS 2018), 2018, : 19 - 28
  • [9] Kernel averaged predictors for spatio-temporal regression models
    Heaton, Matthew J.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2012, 2 : 15 - 32
  • [10] Spatio-Temporal Analysis of Wetland Changes Using a Kernel Extreme Learning Machine Approach
    Lin, Yi
    Yu, Jie
    Cai, Jianqing
    Sneeuw, Nico
    Li, Fengting
    [J]. REMOTE SENSING, 2018, 10 (07)