The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation

被引:29
|
作者
Wang, BX [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Peoples R China
关键词
D O I
10.1002/cpa.10024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the limit behavior as epsilon down arrow 0 (or epsilon down arrow 0 and a down arrow 10) for the solutions of the Cauchy problem of the complex Ginzburg-Landau equation u(t) --> epsilonDeltau - iDeltau + (a + i) \u\(alpha)u = 0, u(0, x) = u(0)(x), 4/n less than or equal to alpha less than or equal to 4/(n - 2) (0 < alpha < 4/(n - 2) as epsilon down arrow 0 and a down arrow 0). We show that its solution will converge to the solution of the Cauchy problem for the semilinear Schrodinger equation v(t)-iDeltav+(a+i)\v\(alpha)v = 0, v(0,x) = u(0)(x) (a = 0 if epsilon down arrow 0 and a down arrow 0) in the spaces C(0, T; H-s) for any T > 0, s = 0, 1, and s(alpha) := n/2 - 2/alpha. Moreover, the sharp convergence rate in such spaces is also given. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:481 / 508
页数:28
相关论文
共 50 条
  • [41] NEW PROPERTIES OF QUASIPERIODIC SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    Akhromeyeva, Tatiana S.
    Malinetskii, George G.
    Potapov, Alexey B.
    Tsertsvadze, George Z.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 955 - 972
  • [42] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446
  • [43] Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation
    SotoCrespo, JM
    Akhmediev, NN
    Afanasjev, VV
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (07) : 1439 - 1449
  • [44] The diversity of steady state solutions of the complex Ginzburg-Landau equation
    Phys Lett Sect A Gen At Solid State Phys, 2-3 (104):
  • [45] The world of the complex Ginzburg-Landau equation
    Aranson, IS
    Kramer, L
    REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 99 - 143
  • [46] A COMPLEX GINZBURG-LANDAU EQUATION IN MAGNETISM
    ZUBRZYCKI, A
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 150 (02) : L143 - L145
  • [47] The complex Ginzburg-Landau equation: an introduction
    Garcia-Morales, Vladimir
    Krischer, Katharina
    CONTEMPORARY PHYSICS, 2012, 53 (02) : 79 - 95
  • [48] Traveling hole solutions of the complex Ginzburg-Landau equation: a review
    Lega, J
    PHYSICA D, 2001, 152 : 269 - 287
  • [49] Soliton solutions and Backlund transformation for the complex Ginzburg-Landau equation
    Liu, Wen-Jun
    Tian, Bo
    Jiang, Yan
    Sun, Kun
    Wang, Pan
    Li, Min
    Qu, Qi-Xing
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4369 - 4376
  • [50] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021