Soliton solutions and Backlund transformation for the complex Ginzburg-Landau equation

被引:6
|
作者
Liu, Wen-Jun [1 ]
Tian, Bo [1 ,2 ,3 ]
Jiang, Yan [1 ]
Sun, Kun [1 ]
Wang, Pan [1 ]
Li, Min [1 ]
Qu, Qi-Xing [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Informat Photon & Opt Commun BUPT, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex Ginzburg-Landau equation; Hirota method; Soliton solution; Backlund transformation; Symbolic computation; NONLINEAR SCHRODINGER MODEL; VARIANT BOUSSINESQ MODEL; ION-ACOUSTIC-WAVES; DUSTY PLASMA; PROPAGATION; TRANSITION; TURBULENCE; NEBULONS; CHAOS; FORM;
D O I
10.1016/j.amc.2010.10.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symbolically investigated in this paper is the complex Ginzburg-Landau (CGL) equation. With the Hirota method, both bright and dark soliton solutions for the CGL equation are obtained simultaneously. New Backlund transformation in the bilinear form is derived. Relevant properties and features are discussed. Solitons can be compressed (amplified) when the nonlinear (linear) dispersion effect is enhanced. Meanwhile, central frequency of the soliton can be affected by the nonlinear and linear dispersion effects. Besides, directions of the movement for the soliton central frequency can be adjusted. Results of this paper would be of certain value to the studies on the soliton compression and amplification. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4369 / 4376
页数:8
相关论文
共 50 条
  • [1] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    [J]. MATEMATIKA, 2009, 25 (01): : 39 - 51
  • [2] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [3] Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation
    Soto-Crespo, JM
    Pesquera, L
    [J]. PHYSICAL REVIEW E, 1997, 56 (06) : 7288 - 7293
  • [4] Soliton solutions for quintic complex Ginzburg-Landau model
    Nawaz, B.
    Ali, K.
    Rizvi, S. T. R.
    Younis, M.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 110 : 49 - 56
  • [5] General soliton solutions of an n-dimensional complex Ginzburg-Landau equation
    Khater, AH
    Callebaut, DK
    Seadawy, AR
    [J]. PHYSICA SCRIPTA, 2000, 62 (05) : 353 - 357
  • [6] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [7] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [8] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    [J]. ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [9] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    [J]. PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633
  • [10] Dark soliton dynamics under the complex Ginzburg-Landau equation
    Horikis, Theodoros P.
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 77 : 94 - 100