Traveling hole solutions of the complex Ginzburg-Landau equation: a review

被引:47
|
作者
Lega, J [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85719 USA
来源
PHYSICA D | 2001年 / 152卷
关键词
complex Ginzburg-Landau equation; phase instability; traveling hole solutions;
D O I
10.1016/S0167-2789(01)00174-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper reviews recent works on localized solutions of the one-dimensional complex Ginzburg-Landau (CGL) equation known as traveling holes. Such coherent structures seem to play an important role in the disordered dynamics displayed by CGL at a finite distance past the Benjamin-Feir instability threshold. We discuss these objects in the broader context of weak turbulence and summarize some of their properties. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 50 条
  • [1] On the stable hole solutions in the complex Ginzburg-Landau equation
    Descalzi, O
    Düring, G
    Tirapegui, E
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 66 - 71
  • [2] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [3] Traveling hole solutions to the complex Ginzburg-Landau equation as perturbations of nonlinear Schrodinger dark solitons
    Lega, J
    Fauve, S
    [J]. PHYSICA D, 1997, 102 (3-4): : 234 - 252
  • [4] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    [J]. NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [5] HOLE SOLUTIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION NEAR A SUBCRITICAL BIFURCATION
    SAKAGUCHI, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1991, 86 (01): : 7 - 12
  • [6] HOLE SOLUTIONS IN THE 1D COMPLEX GINZBURG-LANDAU EQUATION
    POPP, S
    STILLER, O
    ARANSON, I
    KRAMER, L
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 84 (3-4) : 398 - 423
  • [7] Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity
    Zhu, Wenjing
    Xia, Yonghui
    Bai, Yuzhen
    [J]. Applied Mathematics and Computation, 2020, 382
  • [8] Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity
    Zhu, Wenjing
    Xia, Yonghui
    Bai, Yuzhen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 382
  • [9] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [10] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051