The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation

被引:29
|
作者
Wang, BX [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Peoples R China
关键词
D O I
10.1002/cpa.10024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the limit behavior as epsilon down arrow 0 (or epsilon down arrow 0 and a down arrow 10) for the solutions of the Cauchy problem of the complex Ginzburg-Landau equation u(t) --> epsilonDeltau - iDeltau + (a + i) \u\(alpha)u = 0, u(0, x) = u(0)(x), 4/n less than or equal to alpha less than or equal to 4/(n - 2) (0 < alpha < 4/(n - 2) as epsilon down arrow 0 and a down arrow 0). We show that its solution will converge to the solution of the Cauchy problem for the semilinear Schrodinger equation v(t)-iDeltav+(a+i)\v\(alpha)v = 0, v(0,x) = u(0)(x) (a = 0 if epsilon down arrow 0 and a down arrow 0) in the spaces C(0, T; H-s) for any T > 0, s = 0, 1, and s(alpha) := n/2 - 2/alpha. Moreover, the sharp convergence rate in such spaces is also given. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:481 / 508
页数:28
相关论文
共 50 条
  • [21] Solutions of the lowest order complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (04) : 1027 - 1032
  • [22] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2014, T162
  • [23] WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    LEVERMORE, CD
    PHYSICA D, 1994, 71 (03): : 285 - 318
  • [24] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [25] Length scales in solutions of the complex Ginzburg-Landau equation
    Bartuccelli, MV
    Gibbon, JD
    Oliver, M
    PHYSICA D, 1996, 89 (3-4): : 267 - 286
  • [26] Bifurcating vortex solutions of the complex Ginzburg-Landau equation
    Kaper, HG
    Takác, P
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 1999, 5 (04) : 871 - 880
  • [27] Exact periodic solutions of the complex Ginzburg-Landau equation
    Porubov, AV
    Velarde, MG
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 884 - 896
  • [28] Relative periodic solutions of the complex Ginzburg-Landau equation
    López, V
    Boyland, P
    Heath, MT
    Moser, RD
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1042 - 1075
  • [29] On the stable hole solutions in the complex Ginzburg-Landau equation
    Descalzi, O
    Düring, G
    Tirapegui, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 66 - 71
  • [30] Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation
    Cong, Hongzi
    Liu, Jianjun
    Yuan, Xiaoping
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (06)