Bifurcating vortex solutions of the complex Ginzburg-Landau equation

被引:0
|
作者
Kaper, HG
Takác, P
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
complex Ginsburg-Landau equation; bifurcation; vortex solutions; determining nodes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2 pi-periodic vortex solutions that have 2n simple zeros ("vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutions of the CGL equation.
引用
收藏
页码:871 / 880
页数:10
相关论文
共 50 条
  • [1] VORTEX DYNAMICS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MATSUOKA, C
    NOZAKI, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) : 1429 - 1432
  • [2] Bifurcation of vortex solutions to a Ginzburg-Landau equation in an annulus
    Morita, Yoshihisa
    [J]. SINGULARITIES IN PDE AND THE CALCULUS OF VARIATIONS, 2008, 44 : 187 - 200
  • [3] Exact solutions to complex Ginzburg-Landau equation
    Liu, Yang
    Chen, Shuangqing
    Wei, Lixin
    Guan, Bing
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [4] Multisoliton solutions of the complex Ginzburg-Landau equation
    Akhmediev, NN
    Ankiewicz, A
    SotoCrespo, JM
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (21) : 4047 - 4051
  • [5] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    [J]. ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [6] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    [J]. MATEMATIKA, 2009, 25 (01): : 39 - 51
  • [7] Instability of the vortex solution in the complex Ginzburg-Landau equation
    Lin, TC
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) : 11 - 17
  • [8] The Evolution Solutions for Complex Ginzburg-Landau equation
    Wang, Hong-Lei
    Xiang, Chun-Huan
    [J]. PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1630 - 1633
  • [9] Stability of bifurcating solutions for the Ginzburg-Landau equations
    Bolley, C
    Helffer, B
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (05) : 579 - 626
  • [10] Reconnection of vortex filaments in the complex Ginzburg-Landau equation
    Gabbay, M
    Ott, E
    Guzdar, PN
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 2576 - 2579