Bifurcating vortex solutions of the complex Ginzburg-Landau equation

被引:0
|
作者
Kaper, HG
Takác, P
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
complex Ginsburg-Landau equation; bifurcation; vortex solutions; determining nodes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2 pi-periodic vortex solutions that have 2n simple zeros ("vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutions of the CGL equation.
引用
收藏
页码:871 / 880
页数:10
相关论文
共 50 条
  • [11] SHOOTING METHOD FOR VORTEX SOLUTIONS OF A COMPLEX-VALUED GINZBURG-LANDAU EQUATION
    CHEN, XF
    ELLIOTT, CM
    QI, T
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1075 - 1088
  • [12] VORTEX LIQUIDS AND THE GINZBURG-LANDAU EQUATION
    Kurzke, Matthias
    Spirn, Daniel
    FORUM OF MATHEMATICS SIGMA, 2014, 2
  • [13] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2014, T162
  • [14] Solutions of the lowest order complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (04) : 1027 - 1032
  • [15] WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    LEVERMORE, CD
    PHYSICA D, 1994, 71 (03): : 285 - 318
  • [16] On exact solutions of modified complex Ginzburg-Landau equation
    Yomba, E
    Kofané, TC
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 125 (1-2) : 105 - 122
  • [17] Length scales in solutions of the complex Ginzburg-Landau equation
    Bartuccelli, MV
    Gibbon, JD
    Oliver, M
    PHYSICA D, 1996, 89 (3-4): : 267 - 286
  • [18] Exact periodic solutions of the complex Ginzburg-Landau equation
    Porubov, AV
    Velarde, MG
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 884 - 896
  • [19] Relative periodic solutions of the complex Ginzburg-Landau equation
    López, V
    Boyland, P
    Heath, MT
    Moser, RD
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1042 - 1075
  • [20] Quantized vortex dynamics of the complex Ginzburg-Landau equation on the torus
    Zhu, Yongxing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 641 - 667