Bifurcating vortex solutions of the complex Ginzburg-Landau equation

被引:0
|
作者
Kaper, HG
Takác, P
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
complex Ginsburg-Landau equation; bifurcation; vortex solutions; determining nodes;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2 pi-periodic vortex solutions that have 2n simple zeros ("vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutions of the CGL equation.
引用
收藏
页码:871 / 880
页数:10
相关论文
共 50 条
  • [31] Vortex dynamics for the Ginzburg-Landau wave equation
    Jerrard, RL
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (01) : 1 - 30
  • [32] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [33] Pulse solutions of the modified cubic complex Ginzburg-Landau equation
    Mohamadou, Alidou
    Ndzana, Fabien I. I.
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2006, 73 (06) : 596 - 600
  • [34] The diversity of steady state solutions of the complex Ginzburg-Landau equation
    Bazhenov, M
    Bohr, T
    Gorshkov, K
    Rabinovich, M
    PHYSICS LETTERS A, 1996, 217 (2-3) : 104 - 110
  • [35] Numerical continuation of invariant solutions of the complex Ginzburg-Landau equation
    Lopez, Vanessa
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 248 - 270
  • [36] Stationary localized solutions in the subcritical complex Ginzburg-Landau equation
    Descalzi, O
    Argentina, M
    Tirapegui, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2459 - 2465
  • [37] NEW PROPERTIES OF QUASIPERIODIC SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    Akhromeyeva, Tatiana S.
    Malinetskii, George G.
    Potapov, Alexey B.
    Tsertsvadze, George Z.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 955 - 972
  • [38] ON THE INVARIANTS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    MAGEN, M
    ROSENAU, P
    PHYSICS LETTERS A, 1984, 104 (09) : 444 - 446
  • [39] The diversity of steady state solutions of the complex Ginzburg-Landau equation
    Phys Lett Sect A Gen At Solid State Phys, 2-3 (104):
  • [40] Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation
    SotoCrespo, JM
    Akhmediev, NN
    Afanasjev, VV
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (07) : 1439 - 1449