The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation

被引:29
|
作者
Wang, BX [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Peoples R China
关键词
D O I
10.1002/cpa.10024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the limit behavior as epsilon down arrow 0 (or epsilon down arrow 0 and a down arrow 10) for the solutions of the Cauchy problem of the complex Ginzburg-Landau equation u(t) --> epsilonDeltau - iDeltau + (a + i) \u\(alpha)u = 0, u(0, x) = u(0)(x), 4/n less than or equal to alpha less than or equal to 4/(n - 2) (0 < alpha < 4/(n - 2) as epsilon down arrow 0 and a down arrow 0). We show that its solution will converge to the solution of the Cauchy problem for the semilinear Schrodinger equation v(t)-iDeltav+(a+i)\v\(alpha)v = 0, v(0,x) = u(0)(x) (a = 0 if epsilon down arrow 0 and a down arrow 0) in the spaces C(0, T; H-s) for any T > 0, s = 0, 1, and s(alpha) := n/2 - 2/alpha. Moreover, the sharp convergence rate in such spaces is also given. (C) 2002 John Wiley Sons, Inc.
引用
收藏
页码:481 / 508
页数:28
相关论文
共 50 条
  • [31] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [32] CAUCHY PROBLEM FOR THE COMPLEX GINZBURG-LANDAU TYPE EQUATION WITH L-p-INITIAL DATA
    Shimotsuma, Daisuke
    Yokota, Tomomi
    Yoshii, Kentarou
    MATHEMATICA BOHEMICA, 2014, 139 (02): : 353 - 361
  • [33] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .2. Contraction methods
    Ginibre, J
    Velo, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (01) : 45 - 79
  • [34] The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .1. Compactness methods
    Ginibre, J
    Velo, G
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 95 (3-4) : 191 - 228
  • [35] FRONT SOLUTIONS FOR THE GINZBURG-LANDAU EQUATION
    ECKMANN, JP
    GALLAY, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (02) : 221 - 248
  • [36] Lq solutions to the Ginzburg-Landau equation
    Gutiérrez, S
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 307 - 309
  • [37] Pulse solutions of the modified cubic complex Ginzburg-Landau equation
    Mohamadou, Alidou
    Ndzana, Fabien I. I.
    Kofane, Timoleon Crepin
    PHYSICA SCRIPTA, 2006, 73 (06) : 596 - 600
  • [38] The diversity of steady state solutions of the complex Ginzburg-Landau equation
    Bazhenov, M
    Bohr, T
    Gorshkov, K
    Rabinovich, M
    PHYSICS LETTERS A, 1996, 217 (2-3) : 104 - 110
  • [39] Numerical continuation of invariant solutions of the complex Ginzburg-Landau equation
    Lopez, Vanessa
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 248 - 270
  • [40] Stationary localized solutions in the subcritical complex Ginzburg-Landau equation
    Descalzi, O
    Argentina, M
    Tirapegui, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2459 - 2465