Implicit parameter estimation for conditional Gaussian Bayesian networks

被引:1
|
作者
Jarraya, Aida [1 ,2 ]
Leray, Philippe [2 ]
Masmoudi, Afif [1 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab UMR 6241, F-44035 Nantes, France
关键词
Conditional Gaussian Bayesian networks; Bayesian estimation; Implicit estimation; Parameter learning; INFERENCE;
D O I
10.1080/18756891.2014.853926
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parameters. The proposed approach is free from this definition of priors. We use the Implicit estimation method for learning from observations without a prior knowledge. We illustrate the interest of such an estimation method by giving first the Bayesian Expectation A Posteriori estimator for conditional Gaussian parameters. Then, we describe the Implicit estimators for the same parameters. Moreover, an experimental study is proposed in order to compare both approaches.
引用
收藏
页码:6 / 17
页数:12
相关论文
共 50 条
  • [1] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    [J]. International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [2] A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS
    Jarraya, Aida
    Masmoudi, Afif
    Leray, Philippe
    [J]. UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 887 - 893
  • [3] BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
    Gan, Lingrui
    Narisetty, Naveen
    Liang, Feng
    [J]. STATISTICA SINICA, 2022, 32 (01) : 131 - 152
  • [4] Parameter Learning for Hybrid Bayesian Networks With Gaussian Mixture and Dirac Mixture Conditional Densities
    Krauthausen, Peter
    Hanebeck, Uwe D.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 480 - 485
  • [5] Local propagation in conditional Gaussian Bayesian networks
    Cowell, RG
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1517 - 1550
  • [6] Online Updating of Conditional Linear Gaussian Bayesian Networks
    Madsen, Anders L.
    Olesen, Kristian G.
    Jensen, Frank
    Henriksen, Per
    Larsen, Thomas M.
    Moller, Jorn M.
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 186, 2022, 186
  • [7] Parameter estimation via conditional expectation: a Bayesian inversion
    Matthies H.G.
    Zander E.
    Rosić B.V.
    Litvinenko A.
    [J]. Advanced Modeling and Simulation in Engineering Sciences, 3 (1)
  • [8] Bayesian parameter estimation using Gaussian states and measurements
    Morelli, Simon
    Usui, Ayaka
    Agudelo, Elizabeth
    Friis, Nicolai
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
  • [9] Gaussian process regression and conditional polynomial chaos for parameter estimation
    Li, Jing
    Tartakovsky, Alexre M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [10] Active learning for parameter estimation in Bayesian networks
    Tong, S
    Koller, D
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 647 - 653