Local propagation in conditional Gaussian Bayesian networks

被引:0
|
作者
Cowell, RG [1 ]
机构
[1] Sir John Cass Business Sch, Fac Actuarial Sci & Stat, London EC1Y 8TZ, England
关键词
Bayesian networks; conditional Gaussian distributions; propagation algorithm; elimination tree;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a scheme for local computation in conditional Gaussian Bayesian networks that combines the approach of Lauritzen and Jensen (2001) with some elements of Shachter and Kenley (1989). Message passing takes place on an elimination tree structure rather than the more compact (and usual) junction tree of cliques. This yields a local computation scheme in which all calculations involving the continuous variables are performed by manipulating univariate regressions, and hence matrix operations are avoided.
引用
收藏
页码:1517 / 1550
页数:34
相关论文
共 50 条
  • [1] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    [J]. International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [2] Online Updating of Conditional Linear Gaussian Bayesian Networks
    Madsen, Anders L.
    Olesen, Kristian G.
    Jensen, Frank
    Henriksen, Per
    Larsen, Thomas M.
    Moller, Jorn M.
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 186, 2022, 186
  • [3] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Jarraya, Aida
    Leray, Philippe
    Masmoudi, Afif
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 6 - 17
  • [4] Lazy Probability Propagation on Gaussian Bayesian Networks
    Mu, Hua
    Wu, Meiping
    Ma, Hongxu
    Bailey, Tim
    [J]. 22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 1, 2010,
  • [5] A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS
    Jarraya, Aida
    Masmoudi, Afif
    Leray, Philippe
    [J]. UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 887 - 893
  • [6] Parameter Learning for Hybrid Bayesian Networks With Gaussian Mixture and Dirac Mixture Conditional Densities
    Krauthausen, Peter
    Hanebeck, Uwe D.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 480 - 485
  • [7] BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
    Gan, Lingrui
    Narisetty, Naveen
    Liang, Feng
    [J]. STATISTICA SINICA, 2022, 32 (01) : 131 - 152
  • [8] Symbolic propagation and sensitivity analysis in Gaussian Bayesian networks with application to damage assessment
    Castillo, E
    Gutierrez, JM
    Hadi, AS
    Solares, C
    [J]. ARTIFICIAL INTELLIGENCE IN ENGINEERING, 1997, 11 (02): : 173 - 181
  • [9] Objective Bound Conditional Gaussian Process for Bayesian Optimization
    Jeong, Taewon
    Kim, Heeyoung
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] Conditional Independence in Testing Bayesian Networks
    Shen, Yujia
    Huang, Haiying
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97