Parameter estimation via conditional expectation: a Bayesian inversion

被引:0
|
作者
Matthies H.G. [1 ]
Zander E. [1 ]
Rosić B.V. [1 ]
Litvinenko A. [2 ]
机构
[1] Institute of Scientific Computing, Technische Universität Braunschweig, Braunschweig
[2] Center for Uncertainty Quantification, King Abdullah University of Science and Technology, Thuwal
关键词
Bayesian update; Conditional expectation; Filters; Functional and spectral approximation; Inverse identification; Parameter identification; Uncertainty quantification;
D O I
10.1186/s40323-016-0075-7
中图分类号
学科分类号
摘要
When a mathematical or computational model is used to analyse some system, it is usual that some parameters resp. functions or fields in the model are not known, and hence uncertain. These parametric quantities are then identified by actual observations of the response of the real system. In a probabilistic setting, Bayes’s theory is the proper mathematical background for this identification process. The possibility of being able to compute a conditional expectation turns out to be crucial for this purpose. We show how this theoretical background can be used in an actual numerical procedure, and shortly discuss various numerical approximations. © 2016, The Author(s).
引用
收藏
相关论文
共 50 条
  • [1] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    [J]. International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [2] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Jarraya, Aida
    Leray, Philippe
    Masmoudi, Afif
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 6 - 17
  • [3] A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS
    Jarraya, Aida
    Masmoudi, Afif
    Leray, Philippe
    [J]. UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 887 - 893
  • [4] Nonparametric estimation of conditional expectation
    Li, Jiexiang
    Tran, Lanh Tat
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 164 - 175
  • [5] Parameter estimation via inversion with application to a reactor
    Tatiraju, S
    Soroush, M
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2429 - 2433
  • [6] Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis
    Gouveia, WP
    Scales, JA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B2) : 2759 - 2779
  • [7] Bayesian parameter estimation via variational methods
    Jaakkola, TS
    Jordan, MI
    [J]. STATISTICS AND COMPUTING, 2000, 10 (01) : 25 - 37
  • [8] Bayesian parameter estimation via variational methods
    Tommi S. Jaakkola
    Michael I. Jordan
    [J]. Statistics and Computing, 2000, 10 : 25 - 37
  • [9] CONDITIONAL EXPECTATION AND UNBIASED SEQUENTIAL ESTIMATION
    BLACKWELL, D
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1946, 17 (04): : 500 - 500
  • [10] CONDITIONAL EXPECTATION AND UNBIASED SEQUENTIAL ESTIMATION
    BLACKWELL, D
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (01): : 105 - 110