Implicit parameter estimation for conditional Gaussian Bayesian networks

被引:1
|
作者
Jarraya, Aida [1 ,2 ]
Leray, Philippe [2 ]
Masmoudi, Afif [1 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab UMR 6241, F-44035 Nantes, France
关键词
Conditional Gaussian Bayesian networks; Bayesian estimation; Implicit estimation; Parameter learning; INFERENCE;
D O I
10.1080/18756891.2014.853926
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parameters. The proposed approach is free from this definition of priors. We use the Implicit estimation method for learning from observations without a prior knowledge. We illustrate the interest of such an estimation method by giving first the Bayesian Expectation A Posteriori estimator for conditional Gaussian parameters. Then, we describe the Implicit estimators for the same parameters. Moreover, an experimental study is proposed in order to compare both approaches.
引用
收藏
页码:6 / 17
页数:12
相关论文
共 50 条
  • [21] Bayesian quantum parameter estimation with Gaussian states and homodyne measurements in a dissipative environment
    Tang, Jie
    Yu, HuiCun
    Liu, Ying
    Deng, ZhiFeng
    Li, JiaHao
    Cao, YueXiang
    Wei, JiaHua
    Shi, Lei
    [J]. RESULTS IN PHYSICS, 2023, 47
  • [22] Using Bayesian methods for the parameter estimation of deformation monitoring networks
    Tanir, E.
    Felsenstein, K.
    Yalcinkaya, M.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2008, 8 (02) : 335 - 347
  • [23] Parameter estimation for the cosmic microwave background with Bayesian neural networks
    Hortua, Hector J.
    Volpi, Riccardo
    Marinelli, Dimitri
    Malago, Luigi
    [J]. PHYSICAL REVIEW D, 2020, 102 (10)
  • [24] Parameter Estimation in Linear Dynamic Systems using Bayesian networks
    Garan, Maryna
    Vernon, Sylvain
    Kovalenko, Iaroslav
    Modrlak, Osvald
    Lepsik, Petr
    [J]. PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19), 2019, : 203 - 208
  • [25] Bayesian parameter estimation of Galactic binaries in LISA data with Gaussian process regression
    Strub, Stefan H.
    Ferraioli, Luigi
    Schmelzbach, Cedric
    Staehler, Simon C.
    Giardini, Domenico
    [J]. PHYSICAL REVIEW D, 2022, 106 (06)
  • [26] Parameter Estimation in Bayesian Networks Using Overlapping Swarm Intelligence
    Fortier, Nathan
    Sheppard, John
    Strasser, Shane
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 9 - 16
  • [27] Bayesian Parameter Estimation
    Simoen, E.
    Lombaert, G.
    [J]. IDENTIFICATION METHODS FOR STRUCTURAL HEALTH MONITORING, 2016, 567 : 89 - 115
  • [28] PARAMETER ESTIMATION BY IMPLICIT SAMPLING
    Morzfeld, Matthias
    Tu, Xuemin
    Wilkening, Jon
    Chorin, Alexandre J.
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2015, 10 (02) : 205 - 225
  • [29] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-Lopez, Dario
    Masegosa, Andres R.
    Salmeron, Antonio
    Rumi, Rafael
    Langseth, Helge
    Nielsen, Thomas D.
    Madsen, Anders L.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 100 : 115 - 134
  • [30] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Gabbard, Hunter
    Messenger, Chris
    Heng, Ik Siong
    Tonolini, Francesco
    Murray-Smith, Roderick
    [J]. NATURE PHYSICS, 2022, 18 (01) : 112 - +