PARAMETER ESTIMATION BY IMPLICIT SAMPLING

被引:17
|
作者
Morzfeld, Matthias [1 ,2 ]
Tu, Xuemin [3 ]
Wilkening, Jon [1 ,2 ]
Chorin, Alexandre J. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
importance sampling; implicit sampling; Markov chain Monte Carlo; STOCHASTIC NEWTON MCMC; INVERSE PROBLEMS; PARTICLE FILTERS; NOISE;
D O I
10.2140/camcos.2015.10.205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Implicit sampling is a weighted sampling method that is used in data assimilation to sequentially update state estimates of a stochastic model based on noisy and incomplete data. Here we apply implicit sampling to sample the posterior probability density of parameter estimation problems. The posterior probability combines prior information about the parameter with information from a numerical model, e.g., a partial differential equation (PDE), and noisy data. The result of our computations are parameters that lead to simulations that are compatible with the data. We demonstrate the usefulness of our implicit sampling algorithm with an example from subsurface flow. For an efficient implementation, we make use of multiple grids, BFGS optimization coupled to adjoint equations, and Karhunen-Loeve expansions for dimensional reduction. Several difficulties of Markov chain Monte Carlo methods, e.g., estimation of burn-in times or correlations among the samples, are avoided because the implicit samples are independent.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 50 条
  • [1] Parameter Estimation for Ginzburg-Landau Equation via Implicit Sampling
    Guo, Shan
    Xu, Chao
    Tu, Xuemin
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5237 - 5242
  • [2] Sampling Errors in Nested Sampling Parameter Estimation
    Higson, Edward
    Handley, Will
    Hobson, Mike
    Lasenby, Anthony
    [J]. BAYESIAN ANALYSIS, 2018, 13 (03): : 873 - 896
  • [3] Inference of sampling on Weibull parameter estimation
    Jacquelin, J
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 1996, 3 (06) : 809 - 816
  • [4] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    [J]. International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [5] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Jarraya, Aida
    Leray, Philippe
    Masmoudi, Afif
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 6 - 17
  • [6] PARAMETER-ESTIMATION IN ENCOUNTER SAMPLING SURVEYS
    OTIS, DL
    MCDONALD, LL
    EVANS, MA
    [J]. JOURNAL OF WILDLIFE MANAGEMENT, 1993, 57 (03): : 543 - 548
  • [7] Comparison of sampling techniques for Bayesian parameter estimation
    Allison, Rupert
    Dunkley, Joanna
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (04) : 3918 - 3928
  • [8] The efficiency of ranked set sampling for parameter estimation
    Barabesi, L
    El-Sharaawi, A
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 53 (02) : 189 - 199
  • [9] PARAMETER-ESTIMATION IN SYSTEMATIC-SAMPLING
    SCHNEEBERGER, H
    [J]. BIOMETRICAL JOURNAL, 1993, 35 (08) : 933 - 947
  • [10] ITERATIVE IMPORTANCE SAMPLING ALGORITHMS FOR PARAMETER ESTIMATION
    Morzfeld, Matthias
    Day, Marcus S.
    Grout, Ray W.
    Pao, George Shu Heng
    Finsterle, Stefan A.
    Bell, John B.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : B329 - B352