Bayesian parameter estimation of Galactic binaries in LISA data with Gaussian process regression

被引:11
|
作者
Strub, Stefan H. [1 ]
Ferraioli, Luigi [1 ]
Schmelzbach, Cedric [1 ]
Staehler, Simon C. [1 ]
Giardini, Domenico [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Geophys, Sonneggstr 5, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
X-RAY; EVOLUTION;
D O I
10.1103/PhysRevD.106.062003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Laser Interferometer Space Antenna (LISA), which is currently under construction, is designed to measure gravitational wave signals in the milli-Hertz frequency band. It is expected that tens of millions of Galactic binaries will be the dominant sources of observed gravitational waves. The Galactic binaries producing signals at mHz frequency range emit quasimonochromatic gravitational waves, which will be constantly measured by LISA. To resolve as many Galactic binaries as possible is a central challenge of the upcoming LISA dataset analysis. Although it is estimated that tens of thousands of these overlapping gravitational wave signals are resolvable, and the rest blurs into a galactic foreground noise, extracting tens of thousands of signals using Bayesian approaches is still computationally expensive. We developed a new end-to-end pipeline using Gaussian process regression to model the log-likelihood function in order to rapidly compute Bayesian posterior distributions. Using the pipeline we are able to solve the Lisa Data Challenge (LDC) 1-3 consisting of noisy data as well as additional challenges with overlapping signals and particularly faint signals.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Detection pipeline for Galactic binaries in LISA data
    Littenberg, Tyson B.
    [J]. PHYSICAL REVIEW D, 2011, 84 (06):
  • [2] Bayesian parameter estimation of stellar-mass black-hole binaries with LISA
    Buscicchio, Riccardo
    Klein, Antoine
    Roebber, Elinore
    Moore, Christopher J.
    Gerosa, Davide
    Finch, Eliot
    Vecchio, Alberto
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)
  • [3] Properties of the Bayesian Parameter Estimation of a Regression Based on Gaussian Processes
    Zaytsev A.A.
    Burnaev E.V.
    Spokoiny V.G.
    [J]. Journal of Mathematical Sciences, 2014, 203 (6) : 789 - 798
  • [4] LISA: Parameter estimation for massive black hole binaries
    Vecchio, A
    Cutler, C
    [J]. LASER INTERFEROMETER SPACE ANTENNA, 1998, 456 : 101 - 109
  • [5] Semisupervised Gaussian Process Regression for Biophysical Parameter Estimation
    Bazi, Yakoub
    Melgani, Farid
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4248 - 4251
  • [6] Bayesian parameter estimation in the second LISA Pathfinder mock data challenge
    Nofrarias, M.
    Roever, C.
    Hewitson, M.
    Monsky, A.
    Heinzel, G.
    Danzmann, K.
    Ferraioli, L.
    Hueller, M.
    Vitale, S.
    [J]. PHYSICAL REVIEW D, 2010, 82 (12):
  • [7] Global analysis of LISA data with Galactic binaries and massive black hole binaries
    Strub, Stefan H.
    Ferraioli, Luigi
    Schmelzbach, Cedric
    Staehler, Simon C.
    Giardini, Domenico
    [J]. PHYSICAL REVIEW D, 2024, 110 (02)
  • [8] Parameter estimation accuracies of Galactic binaries with eLISA
    Blaut, Arkadiusz
    [J]. ASTROPARTICLE PHYSICS, 2018, 101 : 17 - 26
  • [9] Mock LISA data challenge for the Galactic white dwarf binaries
    Blaut, Arkadiusz
    Babak, Stanislav
    Krolak, Andrzej
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)
  • [10] Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA
    Dey, Kallol
    Karnesis, Nikolaos
    Toubiana, Alexandre
    Barausse, Enrico
    Korsakova, Natalia
    Baghi, Quentin
    Basak, Soumen
    [J]. PHYSICAL REVIEW D, 2021, 104 (04)