Gaussian process regression and conditional polynomial chaos for parameter estimation

被引:5
|
作者
Li, Jing [1 ]
Tartakovsky, Alexre M. [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
BAYESIAN EXPERIMENTAL-DESIGN; DIFFERENTIAL-EQUATIONS; APPROXIMATION; SIMULATION; MINIMIZATION; ALGORITHMS;
D O I
10.1016/j.jcp.2020.109520
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new approach for constructing a data-driven surrogate model and using it for parameter estimation in partial differential equation (PDE) models. We first use parameter observations and Gaussian process regression to condition the Karhunen–Loéve (KL) expansion of the unknown space-dependent parameters and then build the conditional generalized polynomial chaos (gPC) surrogate model of the PDE states. Next, we estimate the unknown parameters by computing coefficients in the KL expansion by minimizing the square difference between the gPC predictions and measurements of the states. Our approach addresses two major challenges in the parameter estimation. First, it reduces dimensionality of the parameter space and replaces expensive, direct solutions of PDEs with the conditional gPC surrogates. Second, the estimated parameter field exactly matches the parameter measurements. In addition, we show that the conditional gPC surrogate can be used to estimate the state variance, that, in turn, can be used to guide data acquisition. We demonstrate that our approach improves the accuracy of parameter estimation with application to one- and two-dimensional Darcy equations that have (unknown) space-dependent hydraulic conductivity. We also discuss the effect of hydraulic conductivity and head locations on the accuracy of the hydraulic conductivity estimations. © 2020 Elsevier Inc.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Semisupervised Gaussian Process Regression for Biophysical Parameter Estimation
    Bazi, Yakoub
    Melgani, Farid
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4248 - 4251
  • [2] Stellar atmospheric parameter estimation using Gaussian process regression
    Bu, Yude
    Pan, Jingchang
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (01) : 256 - 265
  • [3] Global sensitivity analysis using polynomial chaos expansion enhanced Gaussian process regression method
    Xiaobing Shang
    Zhi Zhang
    Hai Fang
    Lichao Jiang
    Lipeng Wang
    [J]. Engineering with Computers, 2024, 40 : 1231 - 1246
  • [4] Global sensitivity analysis using polynomial chaos expansion enhanced Gaussian process regression method
    Shang, Xiaobing
    Zhang, Zhi
    Fang, Hai
    Jiang, Lichao
    Wang, Lipeng
    [J]. ENGINEERING WITH COMPUTERS, 2024, 40 (02) : 1231 - 1246
  • [5] Gaussian Process Conditional Density Estimation
    Dutordoir, Vincent
    Salimbeni, Hugh
    Deisenroth, Marc Peter
    Hensman, James
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Polynomial Chaos Based Method for State and Parameter Estimation
    Madankan, Reza
    Singla, Puneet
    Singh, Tarunraj
    Scott, Peter
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 6358 - 6363
  • [7] Non-Gaussian parameter estimation using generalized polynomial chaos expansion with extended Kalman filtering
    Sen, Subhamoy
    Bhattacharya, Baidurya
    [J]. STRUCTURAL SAFETY, 2018, 70 : 104 - 114
  • [8] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [9] Improving gravitational-wave parameter estimation using Gaussian process regression
    Moore, Christopher J.
    Berry, Christopher P. L.
    Chua, Alvin J. K.
    Gair, Jonathan R.
    [J]. PHYSICAL REVIEW D, 2016, 93 (06)
  • [10] Bayesian parameter estimation of Galactic binaries in LISA data with Gaussian process regression
    Strub, Stefan H.
    Ferraioli, Luigi
    Schmelzbach, Cedric
    Staehler, Simon C.
    Giardini, Domenico
    [J]. PHYSICAL REVIEW D, 2022, 106 (06)