Gaussian process regression and conditional polynomial chaos for parameter estimation

被引:5
|
作者
Li, Jing [1 ]
Tartakovsky, Alexre M. [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
BAYESIAN EXPERIMENTAL-DESIGN; DIFFERENTIAL-EQUATIONS; APPROXIMATION; SIMULATION; MINIMIZATION; ALGORITHMS;
D O I
10.1016/j.jcp.2020.109520
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a new approach for constructing a data-driven surrogate model and using it for parameter estimation in partial differential equation (PDE) models. We first use parameter observations and Gaussian process regression to condition the Karhunen–Loéve (KL) expansion of the unknown space-dependent parameters and then build the conditional generalized polynomial chaos (gPC) surrogate model of the PDE states. Next, we estimate the unknown parameters by computing coefficients in the KL expansion by minimizing the square difference between the gPC predictions and measurements of the states. Our approach addresses two major challenges in the parameter estimation. First, it reduces dimensionality of the parameter space and replaces expensive, direct solutions of PDEs with the conditional gPC surrogates. Second, the estimated parameter field exactly matches the parameter measurements. In addition, we show that the conditional gPC surrogate can be used to estimate the state variance, that, in turn, can be used to guide data acquisition. We demonstrate that our approach improves the accuracy of parameter estimation with application to one- and two-dimensional Darcy equations that have (unknown) space-dependent hydraulic conductivity. We also discuss the effect of hydraulic conductivity and head locations on the accuracy of the hydraulic conductivity estimations. © 2020 Elsevier Inc.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Hospital Pricing Estimation by Gaussian Conditional Random Fields Based Regression on Graphs
    Polychronopoulou, A.
    Obradovic, Z.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2014,
  • [42] Parameter Estimation and Hypothesis Testing of Multivariate Poisson Inverse Gaussian Regression
    Mardalena, Selvi
    Purhadi, Purhadi
    Purnomo, Jerry Dwi Trijoyo
    Prastyo, Dedy Dwi
    [J]. SYMMETRY-BASEL, 2020, 12 (10): : 1 - 16
  • [43] On guaranteed parameter estimation of a multiparameter linear regression process
    Kuechler, Uwe
    Vasiliev, Vyacheslav A.
    [J]. AUTOMATICA, 2010, 46 (04) : 637 - 646
  • [44] REGRESSION ANALYSIS AND PROCESS PARAMETER ESTIMATION - A CAUTIONARY MESSAGE
    YOUNG, PC
    [J]. SIMULATION, 1968, 10 (03) : 125 - &
  • [45] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Fenggang Wang
    Fenfen Xiong
    Shishi Chen
    Jianmei Song
    [J]. Structural and Multidisciplinary Optimization, 2019, 60 : 1583 - 1604
  • [46] Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling
    Wang, Fenggang
    Xiong, Fenfen
    Chen, Shishi
    Song, Jianmei
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (04) : 1583 - 1604
  • [47] Nonparametric identification based on Gaussian process regression for distributed parameter systems
    Wang, Lijie
    Xu, Zuhua
    Zhao, Jun
    Shao, Zhijiang
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (06) : 1229 - 1242
  • [48] Estimation of Stellar Ages and Masses Using Gaussian Process Regression
    Bu, Yude
    Kumar, Yerra Bharat
    Xie, Jianhang
    Pan, Jingchang
    Zhao, Gang
    Wu, Yaqian
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 249 (01):
  • [49] Vehicle consumption estimation via calibrated Gaussian Process regression
    Randon, Mathieu
    Quost, Benjamin
    Boudaoud, Nassim
    von Wissel, Dirk
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 71 - 76
  • [50] Hierarchical Facial Age Estimation Using Gaussian Process Regression
    Sawant, Manisha M.
    Bhurchandi, Kishor
    [J]. IEEE ACCESS, 2019, 7 : 9142 - 9152