Nonparametric identification based on Gaussian process regression for distributed parameter systems

被引:1
|
作者
Wang, Lijie [1 ]
Xu, Zuhua [1 ,2 ]
Zhao, Jun [1 ]
Shao, Zhijiang [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
关键词
Nonparametric identification; Gaussian process regression; distributed parameter system; MODELING APPROACH; DECOMPOSITION; PREDICTION;
D O I
10.1080/00207721.2023.2169058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a nonparametric identification method based on Gaussian process regression (GPR) for completely unknown nonlinear distributed parameter systems (DPSs). Inspired by linear parameter-varying (LPV) modelling approach, an interpolated spatio-temporal Volterra model is developed to represent the DPSs in nonparametric form, in which local Volterra models are interpreted as Gaussian processes. According to the empirical Bayesian approach, we design the third-order stable kernel structure used for embedding prior knowledge and derive the estimation of hyperparameters. The hyperparameters included in local weighting functions and kernel functions are determined by the maximum likelihood method. By utilising the nonparametric identification approach to avoid model structure selection, the proposed method can improve identification result for completely unknown distributed parameter systems. Finally, two case studies validate the effectiveness of the proposed identification method.
引用
收藏
页码:1229 / 1242
页数:14
相关论文
共 50 条
  • [1] Nonparametric Identification Based on Multi-inherited Gaussian Process Regression for Batch Process
    Chen, Minghao
    Xu, Zuhua
    Zhao, Jun
    Song, Chunyue
    Zhu, Yucai
    Shao, Zhijiang
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (47) : 20757 - 20766
  • [2] Nonparametric Identification of Linear Time-Varying Systems using Gaussian Process Regression
    Hallemans, N.
    Lataire, J.
    Pintelon, R.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1001 - 1006
  • [3] Learning Stable Nonparametric Dynamical Systems with Gaussian Process Regression
    Xiao, Wenxin
    Lederer, Armin
    Hirche, Sandra
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1194 - 1199
  • [4] Enhancing photovoltaic systems using Gaussian process regression for parameter identification and fault detection
    Javaid, Aqdas
    Shafi, Imran
    Khalil, Ihsan Ullah
    Ahmad, Shahzor
    Safran, Mejdl
    Alfarhood, Sultan
    Ashraf, Imran
    [J]. ENERGY REPORTS, 2024, 11 : 4485 - 4499
  • [5] Prediction error identification of linear systems: A nonparametric Gaussian regression approach
    Pillonetto, Gianluigi
    Chiuso, Alessandro
    De Nicolao, Giuseppe
    [J]. AUTOMATICA, 2011, 47 (02) : 291 - 305
  • [6] Nonparametric identification of batch process using two-dimensional kernel-based Gaussian process regression
    Chen, Minghao
    Xu, Zuhua
    Zhao, Jun
    Zhu, Yucai
    Shao, Zhijiang
    [J]. CHEMICAL ENGINEERING SCIENCE, 2022, 250
  • [7] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [8] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163
  • [9] Two-stage transfer learning-based nonparametric system identification with Gaussian process regression
    Wang, Shuyu
    Xu, Zuhua
    Chen, Minghao
    Zhao, Jun
    Fang, Jiakun
    Song, Chunyue
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2024, 189
  • [10] Prediction-error identification of LPV systems: A nonparametric Gaussian regression approach
    Darwish, Mohamed Abdelmonim Hassan
    Cox, Pepijn Bastiaan
    Proimadis, Ioannis
    Pillonetto, Gianluigi
    Toth, Roland
    [J]. AUTOMATICA, 2018, 97 : 92 - 103