Nonparametric identification based on Gaussian process regression for distributed parameter systems

被引:1
|
作者
Wang, Lijie [1 ]
Xu, Zuhua [1 ,2 ]
Zhao, Jun [1 ]
Shao, Zhijiang [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
关键词
Nonparametric identification; Gaussian process regression; distributed parameter system; MODELING APPROACH; DECOMPOSITION; PREDICTION;
D O I
10.1080/00207721.2023.2169058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a nonparametric identification method based on Gaussian process regression (GPR) for completely unknown nonlinear distributed parameter systems (DPSs). Inspired by linear parameter-varying (LPV) modelling approach, an interpolated spatio-temporal Volterra model is developed to represent the DPSs in nonparametric form, in which local Volterra models are interpreted as Gaussian processes. According to the empirical Bayesian approach, we design the third-order stable kernel structure used for embedding prior knowledge and derive the estimation of hyperparameters. The hyperparameters included in local weighting functions and kernel functions are determined by the maximum likelihood method. By utilising the nonparametric identification approach to avoid model structure selection, the proposed method can improve identification result for completely unknown distributed parameter systems. Finally, two case studies validate the effectiveness of the proposed identification method.
引用
收藏
页码:1229 / 1242
页数:14
相关论文
共 50 条
  • [21] Nonparametric Modeling and Control of Ship Steering Motion Based on Local Gaussian Process Regression
    Ouyang, Zi-Lu
    Zou, Zao-Jian
    Zou, Lu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)
  • [22] Gaussian process methods for nonparametric functional regression with mixed predictors
    Wang, Bo
    Xu, Aiping
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 80 - 90
  • [23] Posterior consistency of Gaussian process prior for nonparametric binary regression
    Ghosal, Subhashis
    Roy, Anindya
    ANNALS OF STATISTICS, 2006, 34 (05): : 2413 - 2429
  • [24] Gaussian Process Regression and Classification for Probabilistic Damage Assessment of Spatially Distributed Systems
    Pozzi, Matteo
    Wang, Qiaochu
    KSCE JOURNAL OF CIVIL ENGINEERING, 2018, 22 (03) : 1016 - 1026
  • [25] Gaussian Process Regression and Classification for Probabilistic Damage Assessment of Spatially Distributed Systems
    Matteo Pozzi
    Qiaochu Wang
    KSCE Journal of Civil Engineering, 2018, 22 : 1016 - 1026
  • [26] NONPARAMETRIC IDENTIFICATION OF INPUT SIGNALS IN DISTRIBUTED SYSTEMS
    RAFAJLOWICZ, E
    RUTKOWSKI, L
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 1464 - 1465
  • [27] Welding Parameter Optimization Based on Gaussian Process Regression Bayesian Optimization Algorithm
    Sterling, Dillon
    Sterling, Tyler
    Zhang, YuMing
    Chen, Heping
    2015 INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2015, : 1490 - 1496
  • [28] Direct parameter identification of distributed parameter systems
    Coca, D
    Billings, SA
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 11 - 17
  • [29] Using Gaussian process regression for efficient parameter reconstruction
    Schneider, Philipp-Immanuel
    Hammerschmidt, Martin
    Zschiedrich, Lin
    Burger, Sven
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXIII, 2019, 10959
  • [30] Semisupervised Gaussian Process Regression for Biophysical Parameter Estimation
    Bazi, Yakoub
    Melgani, Farid
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4248 - 4251