Nonparametric identification based on Gaussian process regression for distributed parameter systems

被引:1
|
作者
Wang, Lijie [1 ]
Xu, Zuhua [1 ,2 ]
Zhao, Jun [1 ]
Shao, Zhijiang [1 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
关键词
Nonparametric identification; Gaussian process regression; distributed parameter system; MODELING APPROACH; DECOMPOSITION; PREDICTION;
D O I
10.1080/00207721.2023.2169058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a nonparametric identification method based on Gaussian process regression (GPR) for completely unknown nonlinear distributed parameter systems (DPSs). Inspired by linear parameter-varying (LPV) modelling approach, an interpolated spatio-temporal Volterra model is developed to represent the DPSs in nonparametric form, in which local Volterra models are interpreted as Gaussian processes. According to the empirical Bayesian approach, we design the third-order stable kernel structure used for embedding prior knowledge and derive the estimation of hyperparameters. The hyperparameters included in local weighting functions and kernel functions are determined by the maximum likelihood method. By utilising the nonparametric identification approach to avoid model structure selection, the proposed method can improve identification result for completely unknown distributed parameter systems. Finally, two case studies validate the effectiveness of the proposed identification method.
引用
收藏
页码:1229 / 1242
页数:14
相关论文
共 50 条
  • [31] PARAMETER IDENTIFICATION IN LINEAR DISTRIBUTED PARAMETER SYSTEMS
    BHAGAVAN, BK
    NARDIZZI, LR
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (06) : 677 - 679
  • [32] Nonparametric Regression via Variance-Adjusted Gradient Boosting Gaussian Process Regression
    Lu, Hsin-Min
    Chen, Jih-Shin
    Liao, Wei-Chun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2669 - 2679
  • [33] Nonparametric modeling of ship maneuvering motion based on Gaussian process regression optimized by genetic algorithm
    Ouyang, Zi-Lu
    Zou, Zao-Jian
    OCEAN ENGINEERING, 2021, 238
  • [34] A Prior Near-Ignorance Gaussian Process Model for Nonparametric Regression
    Mangili, Francesca
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 187 - 196
  • [35] Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
    Li, Dan
    Wang, Xia
    Lin, Lizhen
    Dey, Dipak K.
    BIOMETRICS, 2016, 72 (03) : 707 - 719
  • [36] A prior near-ignorance Gaussian process model for nonparametric regression
    Mangili, Francesca
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 78 : 153 - 171
  • [37] Distributed Prognostic Health Management with Gaussian Process Regression
    Saha, Sankalita
    Saha, Bhaskar
    Saxena, Abhinav
    Goebel, Kai
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [38] Distributed Gaussian Process Regression Under Localization Uncertainty
    Choi, Sungjoon
    Jadaliha, Mahdi
    Choi, Jongeun
    Oh, Songhwai
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2015, 137 (03):
  • [39] Identification of distributed parameter systems: A neural net based approach
    Gonzalez-Garcia, R
    Rico-Martinez, R
    Kevrekidis, IG
    COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 : S965 - S968
  • [40] Nonparametric Methods for the Identification of Linear Parameter Varying Systems
    Hsu, Kenneth
    Vincent, Tyrone L.
    Poolla, Kameshwar
    2008 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 2008, : 45 - +