Polynomial Chaos Based Method for State and Parameter Estimation

被引:0
|
作者
Madankan, Reza [1 ]
Singla, Puneet [1 ]
Singh, Tarunraj [1 ]
Scott, Peter [2 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a method for state and parameter estimation based on generalized polynomial chaos theory and Bayes' theorem. Generalized polynomial chaos theory (gPC) is used to propagate the joint probability density functions (pdfs) for parameter and state through forward dynamic model while the Bayes' rule is used to fuse the prior pdfs obtained through the gPC process with sensor observations to characterize non-Gaussian posterior density functions for state and parameters. Furthermore, a minimum variance based estimator is also derived which makes use of the gPC process to compute the mean and variance of actual non-Gaussian pdf. Numerical experiments involving two benchmark problems are considered to illustrate the effectiveness of the proposed ideas.
引用
收藏
页码:6358 / 6363
页数:6
相关论文
共 50 条
  • [1] Polynomial-Chaos-Based Bayesian Approach for State and Parameter Estimations
    Madankan, Reza
    Singla, Puneet
    Singh, Tarunraj
    Scott, Peter D.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (04) : 1058 - 1074
  • [2] Parameter estimation using polynomial chaos and maximum likelihood
    Chen-Charpentier, Benito
    Stanescu, Dan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (02) : 336 - 346
  • [3] Polynomial chaos-based parameter estimation methods applied to a vehicle system
    Blanchard, E. D.
    Sandu, A.
    Sandu, C.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2010, 224 (K1) : 59 - 81
  • [4] A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve
    Ma, Zeyu
    Wu, Jinglai
    Zhang, Yunqing
    Jiang, Ming
    [J]. SAE INTERNATIONAL JOURNAL OF COMMERCIAL VEHICLES, 2014, 7 (01) : 124 - 131
  • [5] Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory
    Pence, Benjamin L.
    Fathy, Hosam K.
    Stein, Jeffrey L.
    [J]. AUTOMATICA, 2011, 47 (11) : 2420 - 2424
  • [6] Gaussian process regression and conditional polynomial chaos for parameter estimation
    Li, Jing
    Tartakovsky, Alexre M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [7] A MAXIMAUM LIKELIHOOD APPROACH TO RECURSIVE POLYNOMIAL CHAOS PARAMETER ESTIMATION
    Pence, Benjamin L.
    Fathy, Hosam K.
    Stein, Jeffrey L.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 2144 - 2151
  • [8] Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation
    Kolansky, Jeremy
    Sandu, Corina
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (02):
  • [9] A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
    Blanchard, Emmanuel D.
    Sandu, Adrian
    Sandu, Corina
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (06):
  • [10] Recursive parameter estimation for load sensing proportional valve based on polynomial chaos expansion
    Ma, Zeyu
    Wu, Jinglai
    Zhang, Yunqing
    Jiang, Ming
    [J]. ENGINEERING COMPUTATIONS, 2015, 32 (05) : 1343 - 1371