Bayesian parameter estimation using Gaussian states and measurements

被引:0
|
作者
Morelli, Simon [1 ]
Usui, Ayaka [2 ]
Agudelo, Elizabeth [1 ]
Friis, Nicolai [1 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI Vienna, Boltzmanngasse 3, A-1090 Vienna, Austria
[2] Okinawa Inst Sci & Technol Grad Univ, Quantum Syst Unit, Onna, Okinawa, Japan
基金
奥地利科学基金会;
关键词
quantum metrology; Bayesian estimation; Gaussian quantum optics;
D O I
10.1088/2058-9565/abd83d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound (CRB) is not well defined. In particular, it applies when no initial information about the parameter value is available, e.g., when few measurements are performed. Here, we consider three paradigmatic estimation schemes in continuous-variable (CV) quantum metrology (estimation of displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective. For each of these scenarios, we investigate the precision achievable with single-mode Gaussian states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation strategies that combine good performance with the potential for straightforward experimental realization in terms of Gaussian states and measurements. Our results provide practical solutions for reaching uncertainties where local estimation techniques apply, thus bridging the gap to regimes where asymptotically optimal strategies can be employed.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Bayesian quantum parameter estimation with Gaussian states and homodyne measurements in a dissipative environment
    Tang, Jie
    Yu, HuiCun
    Liu, Ying
    Deng, ZhiFeng
    Li, JiaHao
    Cao, YueXiang
    Wei, JiaHua
    Shi, Lei
    [J]. RESULTS IN PHYSICS, 2023, 47
  • [2] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    [J]. International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [3] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Jarraya, Aida
    Leray, Philippe
    Masmoudi, Afif
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 6 - 17
  • [4] Quantum parameter estimation using multi-mode Gaussian states
    Safranek, Dominik
    Lee, Antony R.
    Fuentes, Ivette
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [5] Properties of the Bayesian Parameter Estimation of a Regression Based on Gaussian Processes
    Zaytsev A.A.
    Burnaev E.V.
    Spokoiny V.G.
    [J]. Journal of Mathematical Sciences, 2014, 203 (6) : 789 - 798
  • [6] A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS
    Jarraya, Aida
    Masmoudi, Afif
    Leray, Philippe
    [J]. UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2012, 7 : 887 - 893
  • [7] Quantum parameter estimation using general single-mode Gaussian states
    Pinel, O.
    Jian, P.
    Treps, N.
    Fabre, C.
    Braun, D.
    [J]. PHYSICAL REVIEW A, 2013, 88 (04)
  • [8] ONLINE BAYESIAN GROUP SPARSE PARAMETER ESTIMATION USING A GENERALIZED INVERSE GAUSSIAN MARKOV CHAIN
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1686 - 1690
  • [9] Bayesian Hyperparameter Estimation using Gaussian Process and Bayesian Optimization
    Katakami, Shun
    Sakamoto, Hirotaka
    Okada, Masato
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (07)
  • [10] RECURSIVE BAYESIAN ESTIMATION USING GAUSSIAN SUMS
    SORENSON, HW
    ALSPACH, DL
    [J]. AUTOMATICA, 1971, 7 (04) : 465 - +