Minimax statistical learning with Wasserstein distances

被引:0
|
作者
Lee, Jaeho [1 ]
Raginsky, Maxim
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove generalization bounds that involve the covering number properties of the original ERM problem. As an illustrative example, we provide generalization guarantees for transport-based domain adaptation problems where the Wasserstein distance between the source and target domain distributions can be reliably estimated from unlabeled samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Statistical Aspects of Wasserstein Distances
    Panaretos, Victor M.
    Zemel, Yoav
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 405 - 431
  • [2] Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning
    Vayer, Titouan
    Gribonval, Remi
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [3] Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances
    Nietert, Sloan
    Sadhu, Ritwik
    Goldfeld, Ziv
    Kato, Kengo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] Statistical Learning in Wasserstein Space
    Karimi, Amirhossein
    Ripani, Luigia
    Georgiou, Tryphon T.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (03): : 899 - 904
  • [5] Wasserstein and Zolotarev distances
    Belili, N
    Heinich, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 811 - 814
  • [6] Minimax estimation of distances on a surface and minimax manifold learning in the isometric-to-convex setting
    Arias-Castro, Ery
    Chau, Phong Alain
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04)
  • [7] Asymptotics of Smoothed Wasserstein Distances
    Chen, Hong-Bin
    Niles-Weed, Jonathan
    POTENTIAL ANALYSIS, 2022, 56 (04) : 571 - 595
  • [8] Subspace Robust Wasserstein Distances
    Paty, Francois-Pierre
    Cuturi, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] Asymptotics of Smoothed Wasserstein Distances
    Hong-Bin Chen
    Jonathan Niles-Weed
    Potential Analysis, 2022, 56 : 571 - 595
  • [10] Minimax Q-learning control for linear systems using the Wasserstein metric
    Zhao, Feiran
    You, Keyou
    AUTOMATICA, 2023, 149