Minimax estimation of distances on a surface and minimax manifold learning in the isometric-to-convex setting

被引:0
|
作者
Arias-Castro, Ery [1 ]
Chau, Phong Alain [2 ]
机构
[1] Univ Calif San Diego, Halicioglu Data Sci Inst, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
shortest paths; geodesic distances; meshes; tangential Delaunay complex; surfaces with positive reach; manifold learning; Isomap; minimax decision theory; NONLINEAR DIMENSIONALITY REDUCTION; HESSIAN EIGENMAPS; RECONSTRUCTION; CONVERGENCE; LAPLACIAN; ALGORITHM; RATES;
D O I
10.1093/imaiai/iaad046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We start by considering the problem of estimating intrinsic distances on a smooth submanifold. We show that minimax optimality can be obtained via a reconstruction of the surface, and discuss the use of a particular mesh construction-the tangential Delaunay complex-for that purpose. We then turn to manifold learning and argue that a variant of Isomap where the distances are instead computed on a reconstructed surface is minimax optimal for the isometric variant of the problem.
引用
收藏
页数:40
相关论文
共 14 条
  • [1] Minimax Manifold Estimation
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 1263 - 1291
  • [2] Minimax manifold estimation
    Genovese, Christopher R.
    Perone-Pacifico, Marco
    Verdinelli, Isabella
    Wasserman, Larry
    Journal of Machine Learning Research, 2012, 13 : 1263 - 1291
  • [3] Minimax adaptive estimation in manifold inference
    Divol, Vincent
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 5888 - 5932
  • [4] Minimax statistical learning with Wasserstein distances
    Lee, Jaeho
    Raginsky, Maxim
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] MINIMAX THEOREMS IN A FULLY NON-CONVEX SETTING
    Ricceri, Biagio
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2019, 3 (01): : 45 - 52
  • [6] Tight minimax rates for manifold estimation under Hausdorff loss
    Kim, Arlene K. H.
    Zhou, Harrison H.
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 1562 - 1582
  • [7] Solving a Class of Non-Convex Minimax Optimization in Federated Learning
    Wu, Xidong
    Sun, Jianhui
    Hu, Zhengmian
    Zhang, Aidong
    Huang, Heng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Minimax Lower Bound and Optimal Estimation of Convex Functions in the Sup-Norm
    Lebair, Teresa M.
    Shen, Jinglai
    Wang, Xiao
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) : 3482 - 3487
  • [9] Minimax Optimal Online Imitation Learning via Replay Estimation
    Swamy, Gokul
    Rajaraman, Nived
    Peng, Matthew
    Choudhury, Sanjiban
    Bagnell, J. Andrew
    Wu, Zhiwei Steven
    Jiao, Jiantao
    Ramchandran, Kannan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] MINIMAX ESTIMATION IN LINEAR-REGRESSION WITH SINGULAR COVARIANCE STRUCTURE AND CONVEX POLYHEDRAL CONSTRAINTS
    STAHLECKER, P
    TRENKLER, G
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 36 (2-3) : 185 - 196