Minimax statistical learning with Wasserstein distances

被引:0
|
作者
Lee, Jaeho [1 ]
Raginsky, Maxim
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove generalization bounds that involve the covering number properties of the original ERM problem. As an illustrative example, we provide generalization guarantees for transport-based domain adaptation problems where the Wasserstein distance between the source and target domain distributions can be reliably estimated from unlabeled samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] OBSTRUCTIONS TO EXTENSION OF WASSERSTEIN DISTANCES FOR VARIABLE MASSES
    Lombardini, Luca
    Rossi, Francesco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4879 - 4890
  • [32] A New Perspective on Wasserstein Distances for Kinetic Problems
    Mikaela Iacobelli
    Archive for Rational Mechanics and Analysis, 2022, 244 : 27 - 50
  • [33] Proxying credit curves via Wasserstein distances
    Michielon, Matteo
    Khedher, Asma
    Spreij, Peter
    ANNALS OF OPERATIONS RESEARCH, 2024, 336 (1-2) : 1351 - 1367
  • [34] Generalization error bounds using Wasserstein distances
    Lopez, Adrian Tovar
    Jog, Varun
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 205 - 209
  • [35] Adapted Wasserstein distances and stability in mathematical finance
    Backhoff-Veraguas, Julio
    Bartl, Daniel
    Beiglboeck, Mathias
    Eder, Manu
    FINANCE AND STOCHASTICS, 2020, 24 (03) : 601 - 632
  • [36] Adapted Wasserstein distances and stability in mathematical finance
    Julio Backhoff-Veraguas
    Daniel Bartl
    Mathias Beiglböck
    Manu Eder
    Finance and Stochastics, 2020, 24 : 601 - 632
  • [37] ON WASSERSTEIN DISTANCES FOR AFFINE TRANSFORMATIONS OF RANDOM VECTORS
    Hamm, Keaton
    Korzeniowski, Andrzej
    FOUNDATIONS OF DATA SCIENCE, 2024, 6 (04): : 468 - 491
  • [38] Proxying credit curves via Wasserstein distances
    Matteo Michielon
    Asma Khedher
    Peter Spreij
    Annals of Operations Research, 2024, 336 : 1351 - 1367
  • [39] Optimal transport and Wasserstein distances for causal models
    Cheridito, Patrick
    Eckstein, Stephan
    BERNOULLI, 2025, 31 (02) : 1351 - 1376
  • [40] Estimation of Wasserstein distances in the Spiked Transport Model
    Niles-Weed, Jonathan
    Rigollet, Philippe
    BERNOULLI, 2022, 28 (04) : 2663 - 2688