Minimax statistical learning with Wasserstein distances

被引:0
|
作者
Lee, Jaeho [1 ]
Raginsky, Maxim
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove generalization bounds that involve the covering number properties of the original ERM problem. As an illustrative example, we provide generalization guarantees for transport-based domain adaptation problems where the Wasserstein distance between the source and target domain distributions can be reliably estimated from unlabeled samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Wasserstein Distances for Stereo Disparity Estimation
    Garg, Divyansh
    Wang, Yan
    Hariharan, Bharath
    Campbell, Mark
    Weinberger, Kilian Q.
    Chao, Wei-Lun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [22] Minimax confidence intervals for the Sliced Wasserstein distance
    Manole, Tudor
    Balakrishnan, Sivaraman
    Wasserman, Larry
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 2252 - 2345
  • [23] MINIMAX ESTIMATION OF SMOOTH DENSITIES IN WASSERSTEIN DISTANCE
    Niles-Weed, Jonathan
    Berthet, Quentin
    ANNALS OF STATISTICS, 2022, 50 (03): : 1519 - 1540
  • [24] Quantum Statistical Learning via Quantum Wasserstein Natural Gradient
    Simon Becker
    Wuchen Li
    Journal of Statistical Physics, 2021, 182
  • [25] Quantum Statistical Learning via Quantum Wasserstein Natural Gradient
    Becker, Simon
    Li, Wuchen
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [26] MINIMAX LOCATION WITH FARTHEST EUCLIDEAN DISTANCES
    Jiang, Jianlin
    Yuan, Xiaoming
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (03): : 407 - 428
  • [27] On efficient multilevel clustering via wasserstein distances
    Huynh, Viet
    Ho, Nhat
    Dam, Nhan
    Nguyen, XuanLong
    Yurochkin, Mikhail
    Bui, Hung
    Phung, Dinh
    Journal of Machine Learning Research, 2021, 22
  • [28] Tree-Sliced Variants of Wasserstein Distances
    Le, Tam
    Yamada, Makoto
    Fukumizu, Kenji
    Cuturi, Marco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [29] Wasserstein Distances, Geodesics and Barycenters of Merge Trees
    Pont, Mathieu
    Vidal, Jules
    Delon, Julie
    Tierny, Julien
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (01) : 291 - 301
  • [30] Inference for empirical Wasserstein distances on finite spaces
    Sommerfeld, Max
    Munk, Axel
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (01) : 219 - 238