Minimax statistical learning with Wasserstein distances

被引:0
|
作者
Lee, Jaeho [1 ]
Raginsky, Maxim
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove generalization bounds that involve the covering number properties of the original ERM problem. As an illustrative example, we provide generalization guarantees for transport-based domain adaptation problems where the Wasserstein distance between the source and target domain distributions can be reliably estimated from unlabeled samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A New Perspective on Wasserstein Distances for Kinetic Problems
    Iacobelli, Mikaela
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (01) : 27 - 50
  • [42] On Efficient Multilevel Clustering via Wasserstein Distances
    Viet Huynh
    Nhat Ho
    Nhan Dam
    XuanLong Nguyen
    Yurochkin, Mikhail
    Hung Bui
    Dinh Phung
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [43] Nearly minimax optimal Wasserstein conditional independence testing
    Neykov, Matey
    Wasserman, Larry
    Kim, Ilmun
    Balakrishnan, Sivaraman
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2024, 13 (04)
  • [44] Universality of persistence diagrams and the bottleneck and Wasserstein distances
    Bubenik P.
    Elchesen A.
    Computational Geometry: Theory and Applications, 2022, 105-106
  • [45] Histogram based segmentation using wasserstein distances
    Chan, Tony
    Esedoglu, Selirn
    Ni, Kangyu
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2007, 4485 : 697 - +
  • [46] DISTRIBUTIONAL ROBUSTNESS IN MINIMAX LINEAR QUADRATIC CONTROL WITH WASSERSTEIN DISTANCE
    Kim, Kihyun
    Yang, Insoon
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (02) : 458 - 483
  • [47] Ergodicity of regime-switching diffusions in Wasserstein distances
    Shao, Jinghai
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) : 739 - 758
  • [48] Gromov-Wasserstein distances between Gaussian distributions
    Delon, Julie
    Desolneux, Agnes
    Salmona, Antoine
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) : 1178 - 1198
  • [49] Wasserstein Distances for Estimating Parameters in Stochastic Reaction Networks
    Ocal, Kaan
    Grima, Ramon
    Sanguinetti, Guido
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2019), 2019, 11773 : 347 - 351
  • [50] WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS ARE MINIMAX OPTIMAL DISTRIBUTION ESTIMATORS
    Stephanovitch, Arthur
    Aamari, Eddie
    Levrard, Clement
    ANNALS OF STATISTICS, 2024, 52 (05): : 2167 - 2193