A New Perspective on Wasserstein Distances for Kinetic Problems

被引:7
|
作者
Iacobelli, Mikaela [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
VLASOV-POISSON SYSTEM; QUASI-NEUTRAL LIMIT; HELLINGER-KANTOROVICH DISTANCE; GLOBAL CLASSICAL-SOLUTIONS; MEAN-FIELD; EMPIRICAL MEASURES; TRANSPORT; EQUATION; PROPAGATION; EXISTENCE;
D O I
10.1007/s00205-021-01705-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of Wasserstein-type distances specifically designed to tackle questions concerning stability and convergence to equilibria for kinetic equations. Thanks to these new distances, we improve some classical estimates by Loeper (J Math Pures Appl (9) 86(1):68-79, 2006) and Dobrushin (Funktsional Anal i Prilozhen 13:48-58, 1979) on Vlasov-type equations, and we present an application to quasi-neutral limits.
引用
收藏
页码:27 / 50
页数:24
相关论文
共 50 条
  • [1] A New Perspective on Wasserstein Distances for Kinetic Problems
    Mikaela Iacobelli
    Archive for Rational Mechanics and Analysis, 2022, 244 : 27 - 50
  • [2] Wasserstein and Zolotarev distances
    Belili, N
    Heinich, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 811 - 814
  • [3] On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line
    Beinert, Robert
    Heiss, Cosmas
    Steidl, Gabriele
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (02): : 1028 - 1032
  • [4] Asymptotics of Smoothed Wasserstein Distances
    Chen, Hong-Bin
    Niles-Weed, Jonathan
    POTENTIAL ANALYSIS, 2022, 56 (04) : 571 - 595
  • [5] Subspace Robust Wasserstein Distances
    Paty, Francois-Pierre
    Cuturi, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [6] Asymptotics of Smoothed Wasserstein Distances
    Hong-Bin Chen
    Jonathan Niles-Weed
    Potential Analysis, 2022, 56 : 571 - 595
  • [7] Statistical Aspects of Wasserstein Distances
    Panaretos, Victor M.
    Zemel, Yoav
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 405 - 431
  • [8] Measuring association with Wasserstein distances
    Wiesel, Johannes C. W.
    BERNOULLI, 2022, 28 (04) : 2816 - 2832
  • [9] Generalized Sliced Wasserstein Distances
    Kolouri, Soheil
    Nadjahi, Kimia
    Simsekli, Umut
    Badeau, Roland
    Rohde, Gustavo K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Graph Diffusion Wasserstein Distances
    Barbe, Amelie
    Sebban, Marc
    Goncalves, Paulo
    Borgnat, Pierre
    Gribonval, Remi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 577 - 592