On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line

被引:2
|
作者
Beinert, Robert [1 ]
Heiss, Cosmas [1 ]
Steidl, Gabriele [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2023年 / 16卷 / 02期
关键词
point assignment problem; Gromov-Wasserstein distance; Gromov--Monge formulation; sliced Gromv-Wasserstein;
D O I
10.1137/22M1497808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let x1 < \cdot \cdot \cdot < xn and y1 < \cdot \cdot \cdot < yn, n \in N, be real numbers. We show by an example that the assignment problem max \sigma\in Sn \sumn 1 F\sigma(x, y) := 2 i,k =1 lxi -xkl\alphaly\sigma(i) -y\sigma(k)l\alpha, \alpha > 0, is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if n > 2 + 2\alpha. Indeed the above maximum can be, depending on the number of points, arbitrarily far away from Fid(x, y) and FFid(x, y). The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein distances, which have recently received a lot of attention in imaging and shape analysis.
引用
收藏
页码:1028 / 1032
页数:5
相关论文
共 50 条
  • [1] Gromov-Wasserstein distances between Gaussian distributions
    Delon, Julie
    Desolneux, Agnes
    Salmona, Antoine
    JOURNAL OF APPLIED PROBABILITY, 2022, 59 (04) : 1178 - 1198
  • [2] Comparison results for Gromov-Wasserstein and Gromov-Monge distances
    Memoli, Facundo
    Needham, Tom
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [3] Gromov-Wasserstein Distances and the Metric Approach to Object Matching
    Memoli, Facundo
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (04) : 417 - 487
  • [4] Sliced Gromov-Wasserstein
    Vayer, Titouan
    Flamary, Remi
    Tavenard, Romain
    Chapel, Laetitia
    Courty, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Breaking Isometric Ties and Introducing Priors in Gromov-Wasserstein Distances
    Demetci, Pinar
    Quang Huy Tran
    Redko, Ievgen
    Singh, Ritambhara
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [6] Quantized Gromov-Wasserstein
    Chowdhury, Samir
    Miller, David
    Needham, Tom
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 811 - 827
  • [7] The Ultrametric Gromov-Wasserstein Distance
    Memoli, Facundo
    Munk, Axel
    Wan, Zhengchao
    Weitkamp, Christoph
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1378 - 1450
  • [8] On a Linear Gromov-Wasserstein Distance
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7292 - 7305
  • [9] A spectral notion of Gromov-Wasserstein distance and related methods
    Memoli, Facundo
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (03) : 363 - 401
  • [10] Subspace Detours Meet Gromov-Wasserstein
    Bonet, Clement
    Vayer, Titouan
    Courty, Nicolas
    Septier, Francois
    Drumetz, Lucas
    ALGORITHMS, 2021, 14 (12)