The Ultrametric Gromov-Wasserstein Distance

被引:1
|
作者
Memoli, Facundo [1 ]
Munk, Axel [2 ]
Wan, Zhengchao [3 ]
Weitkamp, Christoph [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Gottingen, Inst Math Stochast, Gottingen, Germany
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA USA
关键词
Ultrametric space; Gromov-Hausdorff distance; Gromov-Wasserstein distance; Optimal transport; METRIC-SPACES; GEOMETRY; REPRESENTATION; SIMILARITY; ALIGNMENT; OBJECTS;
D O I
10.1007/s00454-023-00583-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate compact ultrametric measure spaces which form a subset U(w )of the collection of all metric measure spaces M-w. In analogy with the notion of the ultrametric Gromov-Hausdorff distance on the collection of ultrametric spaces , we define ultrametric versions of two metrics on U-w, namely of Sturm's Gromov-Wasserstein distance of order p and of the Gromov-Wasserstein distance of order p. We study the basic topological and geometric properties of these distances as well as their relation and derive for p = infinity a polynomial time algorithm for their calculation. Further, several lower bounds for both distances are derived and some of our results are generalized to the case of finite ultra-dissimilarity spaces. Finally, we study the relation between the Gromov-Wasserstein distance and its ultrametric version (as well as the relation between the corresponding lower bounds) in simulations and apply our findings for phylogenetic tree shape comparisons.
引用
收藏
页码:1378 / 1450
页数:73
相关论文
共 50 条
  • [1] The Ultrametric Gromov–Wasserstein Distance
    Facundo Mémoli
    Axel Munk
    Zhengchao Wan
    Christoph Weitkamp
    Discrete & Computational Geometry, 2023, 70 : 1378 - 1450
  • [2] On a Linear Gromov-Wasserstein Distance
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7292 - 7305
  • [3] The Gromov-Wasserstein Distance: A Brief Overview
    Memoli, Facundo
    AXIOMS, 2014, 3 (03): : 335 - 341
  • [4] The Gromov-Wasserstein Distance Between Spheres
    Arya, Shreya
    Auddy, Arnab
    Clark, Ranthony A.
    Lim, Sunhyuk
    Memoli, Facundo
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,
  • [5] Fused Gromov-Wasserstein Distance for Structured Objects
    Vayer, Titouan
    Chapel, Laetitia
    Flamary, Remi
    Tavenard, Romain
    Courty, Nicolas
    ALGORITHMS, 2020, 13 (09)
  • [6] A brief survey on Computational Gromov-Wasserstein distance
    Zheng, Lei
    Xiao, Yang
    Niu, Lingfeng
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 697 - 702
  • [7] Gromov-Wasserstein Averaging of Kernel and Distance Matrices
    Peyre, Gabriel
    Cuturi, Marco
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [8] Sliced Gromov-Wasserstein
    Vayer, Titouan
    Flamary, Remi
    Tavenard, Romain
    Chapel, Laetitia
    Courty, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] Quantized Gromov-Wasserstein
    Chowdhury, Samir
    Miller, David
    Needham, Tom
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 811 - 827
  • [10] Classification of atomic environments via the Gromov-Wasserstein distance
    Kawano, Sakura
    Mason, Jeremy K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188