On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line

被引:2
|
作者
Beinert, Robert [1 ]
Heiss, Cosmas [1 ]
Steidl, Gabriele [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2023年 / 16卷 / 02期
关键词
point assignment problem; Gromov-Wasserstein distance; Gromov--Monge formulation; sliced Gromv-Wasserstein;
D O I
10.1137/22M1497808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let x1 < \cdot \cdot \cdot < xn and y1 < \cdot \cdot \cdot < yn, n \in N, be real numbers. We show by an example that the assignment problem max \sigma\in Sn \sumn 1 F\sigma(x, y) := 2 i,k =1 lxi -xkl\alphaly\sigma(i) -y\sigma(k)l\alpha, \alpha > 0, is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if n > 2 + 2\alpha. Indeed the above maximum can be, depending on the number of points, arbitrarily far away from Fid(x, y) and FFid(x, y). The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein distances, which have recently received a lot of attention in imaging and shape analysis.
引用
收藏
页码:1028 / 1032
页数:5
相关论文
共 50 条
  • [31] Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
    Brogat-Motte, Luc
    Flamary, Remi
    Brouard, Celine
    Rousu, Juho
    d'Alche-Buc, Florence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [32] Multi-marginal Gromov-Wasserstein transport and barycentres
    Beier, Florian
    Beinert, Robert
    Steidl, Gabriele
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2720 - 2752
  • [33] Outlier-Robust Gromov-Wasserstein for Graph Data
    Kong, Lemin
    Li, Jiajin
    Tang, Jianheng
    So, Anthony Man-Cho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [34] Gromov-Wasserstein Learning for Graph Matching and Node Embedding
    Xu, Hongteng
    Luo, Dixin
    Zha, Hongyuan
    Carin, Lawrence
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [35] Classification of atomic environments via the Gromov-Wasserstein distance
    Kawano, Sakura
    Mason, Jeremy K.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [36] On a linear fused Gromov-Wasserstein distance for graph structured data
    Nguyen, Dai Hai
    Tsuda, Koji
    PATTERN RECOGNITION, 2023, 138
  • [37] Distributed IoT Community Detection via Gromov-Wasserstein Metric
    Chang, Shih Yu
    Chen, Yi
    Kao, Yi-Chih
    Chen, Hsiao-Hwa
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13281 - 13298
  • [38] Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
    Li, Mengyu
    Yu, Jun
    Xu, Hongteng
    Meng, Cheng
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1512 - 1523
  • [39] A Gromov-Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening
    Chen, Yifan
    Yao, Rentian
    Yang, Yun
    Chen, Jie
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [40] The Gromov-Wasserstein distance between networks and stable network invariants
    Chowdhury, Samir
    Memoli, Facundo
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 757 - 787