On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line

被引:2
|
作者
Beinert, Robert [1 ]
Heiss, Cosmas [1 ]
Steidl, Gabriele [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2023年 / 16卷 / 02期
关键词
point assignment problem; Gromov-Wasserstein distance; Gromov--Monge formulation; sliced Gromv-Wasserstein;
D O I
10.1137/22M1497808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let x1 < \cdot \cdot \cdot < xn and y1 < \cdot \cdot \cdot < yn, n \in N, be real numbers. We show by an example that the assignment problem max \sigma\in Sn \sumn 1 F\sigma(x, y) := 2 i,k =1 lxi -xkl\alphaly\sigma(i) -y\sigma(k)l\alpha, \alpha > 0, is in general neither solved by the identical permutation (id) nor the anti-identical permutation (a-id) if n > 2 + 2\alpha. Indeed the above maximum can be, depending on the number of points, arbitrarily far away from Fid(x, y) and FFid(x, y). The motivation to deal with such assignment problems came from their relation to Gromov-Wasserstein distances, which have recently received a lot of attention in imaging and shape analysis.
引用
收藏
页码:1028 / 1032
页数:5
相关论文
共 50 条
  • [41] Gromov-Wasserstein Guided Representation Learning for Cross-Domain Recommendation
    Li, Xinhang
    Qiu, Zhaopeng
    Zhao, Xiangyu
    Wang, Zihao
    Zhang, Yong
    Xing, Chunxiao
    Wu, Xian
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1199 - 1208
  • [42] Certifying Robust Graph Classification under Orthogonal Gromov-Wasserstein Threats
    Jin, Hongwei
    Yu, Zishun
    Zhang, Xinhua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [43] Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications
    Ma, Xinyu
    Chu, Xu
    Wang, Yasha
    Lin, Yang
    Zhao, Junfeng
    Ma, Liantao
    Zhu, Wenwu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [44] Modelling Convex Shape Priors and Matching Based on the Gromov-Wasserstein Distance
    Schmitzer, Bernhard
    Schnoerr, Christoph
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 143 - 159
  • [45] Modelling Convex Shape Priors and Matching Based on the Gromov-Wasserstein Distance
    Bernhard Schmitzer
    Christoph Schnörr
    Journal of Mathematical Imaging and Vision, 2013, 46 : 143 - 159
  • [46] Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression
    Xiang, Yue
    Luo, Dixin
    Xu, Hongteng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 14566 - 14574
  • [47] Gromov–Wasserstein Distances and the Metric Approach to Object Matching
    Facundo Mémoli
    Foundations of Computational Mathematics, 2011, 11 : 417 - 487
  • [48] Minimum Energy Density Steering of Linear Systems With Gromov-Wasserstein Terminal Cost
    Morimoto, Kohei
    Kashima, Kenji
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 586 - 591
  • [49] Globally solving the Gromov-Wasserstein problem for point clouds in low dimensional Euclidean spaces
    Ryner, Martin
    Kronqvist, Jan
    Karlsson, Johan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [50] Accelerate rotation invariant sliced Gromov-Wasserstein distance by an alternative optimization method
    Luo, Jinming
    Bian, Yuhao
    Gao, Xianjie
    Liu, Jian
    Liu, Xiuping
    INFORMATION SCIENCES, 2024, 677