Wasserstein and Zolotarev distances

被引:2
|
作者
Belili, N [1 ]
Heinich, H
机构
[1] Univ Rouen, UPRES A CNRS 6085, F-76821 Mt St Aignan, France
[2] INSA Rouen, UPRESA A CNRS 6085, Dept Genie Math, F-76131 Mont St Aignan, France
关键词
D O I
10.1016/S0764-4442(00)00274-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we compare Wasserstein and Zolotarev distances between probability measures on Rd In the case d = 1, we give a new proof of Rio's theorem. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:811 / 814
页数:4
相关论文
共 50 条
  • [1] Asymptotics of Smoothed Wasserstein Distances
    Chen, Hong-Bin
    Niles-Weed, Jonathan
    POTENTIAL ANALYSIS, 2022, 56 (04) : 571 - 595
  • [2] Subspace Robust Wasserstein Distances
    Paty, Francois-Pierre
    Cuturi, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Asymptotics of Smoothed Wasserstein Distances
    Hong-Bin Chen
    Jonathan Niles-Weed
    Potential Analysis, 2022, 56 : 571 - 595
  • [4] Statistical Aspects of Wasserstein Distances
    Panaretos, Victor M.
    Zemel, Yoav
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 405 - 431
  • [5] Measuring association with Wasserstein distances
    Wiesel, Johannes C. W.
    BERNOULLI, 2022, 28 (04) : 2816 - 2832
  • [6] Generalized Sliced Wasserstein Distances
    Kolouri, Soheil
    Nadjahi, Kimia
    Simsekli, Umut
    Badeau, Roland
    Rohde, Gustavo K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [7] Graph Diffusion Wasserstein Distances
    Barbe, Amelie
    Sebban, Marc
    Goncalves, Paulo
    Borgnat, Pierre
    Gribonval, Remi
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 577 - 592
  • [8] Orthogonal Estimation of Wasserstein Distances
    Rowland, Mark
    Hron, Jiri
    Tang, Yunhao
    Choromanski, Krzysztof
    Sarlos, Tamas
    Weller, Adrian
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 186 - 195
  • [9] Tropical optimal transport and Wasserstein distances
    Lee W.
    Li W.
    Lin B.
    Monod A.
    Information Geometry, 2022, 5 (1) : 247 - 287
  • [10] On adaptive confidence sets for the Wasserstein distances
    Deo, Neil
    Randrianarisoa, Thibault
    BERNOULLI, 2023, 29 (03) : 2119 - 2141