Wasserstein and Zolotarev distances

被引:2
|
作者
Belili, N [1 ]
Heinich, H
机构
[1] Univ Rouen, UPRES A CNRS 6085, F-76821 Mt St Aignan, France
[2] INSA Rouen, UPRESA A CNRS 6085, Dept Genie Math, F-76131 Mont St Aignan, France
关键词
D O I
10.1016/S0764-4442(00)00274-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we compare Wasserstein and Zolotarev distances between probability measures on Rd In the case d = 1, we give a new proof of Rio's theorem. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:811 / 814
页数:4
相关论文
共 50 条
  • [41] Wasserstein distances in the analysis of time series and dynamical systems
    Muskulus, Michael
    Verduyn-Lunel, Sjoerd
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (01) : 45 - 58
  • [42] Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances
    De Ponti, Nicolo
    Farinelli, Sara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (04)
  • [43] Gromov–Wasserstein Distances and the Metric Approach to Object Matching
    Facundo Mémoli
    Foundations of Computational Mathematics, 2011, 11 : 417 - 487
  • [44] Markovian Sliced Wasserstein Distances: Beyond Independent Projections
    Khai Nguyen
    Ren, Tongzheng
    Nhat Ho
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Asymptotics of smoothed Wasserstein distances in the small noise regime
    Ding, Yunzi
    Niles-Weed, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [46] Gromov-Wasserstein Distances and the Metric Approach to Object Matching
    Memoli, Facundo
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (04) : 417 - 487
  • [47] Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains
    Solomon, Justin
    de Goes, Fernando
    Peyre, Gabriel
    Cuturi, Marco
    Butscher, Adrian
    Nguyen, Andy
    Du, Tao
    Guibas, Leonidas
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [48] A Duality-Based Proof of the Triangle Inequality for the Wasserstein Distances
    Golse F.
    La Matematica, 2024, 3 (1): : 196 - 210
  • [49] Characterization of translation invariant MMD on Rd and connections with Wasserstein distances
    Modeste, Thibault
    Dombry, Clement
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [50] Exponential Contraction in Wasserstein Distances for Diffusion Semigroups with Negative Curvature
    Wang, Feng-Yu
    POTENTIAL ANALYSIS, 2020, 53 (03) : 1123 - 1144