Graph Diffusion Wasserstein Distances

被引:0
|
作者
Barbe, Amelie [1 ,2 ,3 ]
Sebban, Marc [3 ]
Goncalves, Paulo [1 ]
Borgnat, Pierre [2 ]
Gribonval, Remi [1 ]
机构
[1] Univ Lyon, ENS Lyon, CNRS, INRIA,LIP UMR 5668,UCB Lyon 1, F-69342 Lyon, France
[2] Univ Lyon, ENS Lyon, UCB Lyon 1, CNRS,Lab Phys, F-69342 Lyon, France
[3] Univ Lyon, UJM St Etienne, CNRS, Inst Opt,Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France
关键词
Optimal Transport; Graph Laplacian; Heat diffusion;
D O I
10.1007/978-3-030-67661-2_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimal Transport (OT) for structured data has received much attention in the machine learning community, especially for addressing graph classification or graph transfer learning tasks. In this paper, we present the Diffusion Wasserstein (DW) distance, as a generalization of the standard Wasserstein distance to undirected and connected graphs where nodes are described by feature vectors. DW is based on the Laplacian exponential kernel and benefits from the heat diffusion to catch both structural and feature information from the graphs. We further derive lower/upper bounds on DW and show that it can be directly plugged into the Fused GromovWasserstein (FGW) distance that has been recently proposed, leading - for free - to a DifFused Gromov Wasserstein distance (DFGW) that allows a significant performance boost when solving graph domain adaptation tasks.
引用
收藏
页码:577 / 592
页数:16
相关论文
共 50 条
  • [1] Optimization of the Diffusion Time in Graph Diffused-Wasserstein Distances: Application to Domain Adaptation
    Barbe, Amelie
    Goncalves, Paulo
    Sebban, Marc
    Borgnat, Pierre
    Gribonval, Remi
    Vayer, Titouan
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 786 - 790
  • [2] Exponential Contraction in Wasserstein Distances for Diffusion Semigroups with Negative Curvature
    Wang, Feng-Yu
    POTENTIAL ANALYSIS, 2020, 53 (03) : 1123 - 1144
  • [3] Exponential Contraction in Wasserstein Distances for Diffusion Semigroups with Negative Curvature
    Feng-Yu Wang
    Potential Analysis, 2020, 53 : 1123 - 1144
  • [4] Wasserstein and Zolotarev distances
    Belili, N
    Heinich, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 811 - 814
  • [5] Asymptotics of Smoothed Wasserstein Distances
    Chen, Hong-Bin
    Niles-Weed, Jonathan
    POTENTIAL ANALYSIS, 2022, 56 (04) : 571 - 595
  • [6] Subspace Robust Wasserstein Distances
    Paty, Francois-Pierre
    Cuturi, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [7] Asymptotics of Smoothed Wasserstein Distances
    Hong-Bin Chen
    Jonathan Niles-Weed
    Potential Analysis, 2022, 56 : 571 - 595
  • [8] Statistical Aspects of Wasserstein Distances
    Panaretos, Victor M.
    Zemel, Yoav
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 405 - 431
  • [9] Measuring association with Wasserstein distances
    Wiesel, Johannes C. W.
    BERNOULLI, 2022, 28 (04) : 2816 - 2832
  • [10] Generalized Sliced Wasserstein Distances
    Kolouri, Soheil
    Nadjahi, Kimia
    Simsekli, Umut
    Badeau, Roland
    Rohde, Gustavo K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32