Graph Diffusion Wasserstein Distances

被引:0
|
作者
Barbe, Amelie [1 ,2 ,3 ]
Sebban, Marc [3 ]
Goncalves, Paulo [1 ]
Borgnat, Pierre [2 ]
Gribonval, Remi [1 ]
机构
[1] Univ Lyon, ENS Lyon, CNRS, INRIA,LIP UMR 5668,UCB Lyon 1, F-69342 Lyon, France
[2] Univ Lyon, ENS Lyon, UCB Lyon 1, CNRS,Lab Phys, F-69342 Lyon, France
[3] Univ Lyon, UJM St Etienne, CNRS, Inst Opt,Grad Sch,Lab Hubert Curien UMR 5516, F-42023 St Etienne, France
关键词
Optimal Transport; Graph Laplacian; Heat diffusion;
D O I
10.1007/978-3-030-67661-2_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimal Transport (OT) for structured data has received much attention in the machine learning community, especially for addressing graph classification or graph transfer learning tasks. In this paper, we present the Diffusion Wasserstein (DW) distance, as a generalization of the standard Wasserstein distance to undirected and connected graphs where nodes are described by feature vectors. DW is based on the Laplacian exponential kernel and benefits from the heat diffusion to catch both structural and feature information from the graphs. We further derive lower/upper bounds on DW and show that it can be directly plugged into the Fused GromovWasserstein (FGW) distance that has been recently proposed, leading - for free - to a DifFused Gromov Wasserstein distance (DFGW) that allows a significant performance boost when solving graph domain adaptation tasks.
引用
收藏
页码:577 / 592
页数:16
相关论文
共 50 条
  • [21] OBSTRUCTIONS TO EXTENSION OF WASSERSTEIN DISTANCES FOR VARIABLE MASSES
    Lombardini, Luca
    Rossi, Francesco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4879 - 4890
  • [22] A New Perspective on Wasserstein Distances for Kinetic Problems
    Mikaela Iacobelli
    Archive for Rational Mechanics and Analysis, 2022, 244 : 27 - 50
  • [23] Proxying credit curves via Wasserstein distances
    Michielon, Matteo
    Khedher, Asma
    Spreij, Peter
    ANNALS OF OPERATIONS RESEARCH, 2024, 336 (1-2) : 1351 - 1367
  • [24] Generalization error bounds using Wasserstein distances
    Lopez, Adrian Tovar
    Jog, Varun
    2018 IEEE INFORMATION THEORY WORKSHOP (ITW), 2018, : 205 - 209
  • [25] Adapted Wasserstein distances and stability in mathematical finance
    Backhoff-Veraguas, Julio
    Bartl, Daniel
    Beiglboeck, Mathias
    Eder, Manu
    FINANCE AND STOCHASTICS, 2020, 24 (03) : 601 - 632
  • [26] Adapted Wasserstein distances and stability in mathematical finance
    Julio Backhoff-Veraguas
    Daniel Bartl
    Mathias Beiglböck
    Manu Eder
    Finance and Stochastics, 2020, 24 : 601 - 632
  • [27] ON WASSERSTEIN DISTANCES FOR AFFINE TRANSFORMATIONS OF RANDOM VECTORS
    Hamm, Keaton
    Korzeniowski, Andrzej
    FOUNDATIONS OF DATA SCIENCE, 2024, 6 (04): : 468 - 491
  • [28] Proxying credit curves via Wasserstein distances
    Matteo Michielon
    Asma Khedher
    Peter Spreij
    Annals of Operations Research, 2024, 336 : 1351 - 1367
  • [29] Optimal transport and Wasserstein distances for causal models
    Cheridito, Patrick
    Eckstein, Stephan
    BERNOULLI, 2025, 31 (02) : 1351 - 1376
  • [30] Estimation of Wasserstein distances in the Spiked Transport Model
    Niles-Weed, Jonathan
    Rigollet, Philippe
    BERNOULLI, 2022, 28 (04) : 2663 - 2688