Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

被引:50
|
作者
Chaney, Nathaniel W. [1 ]
Herman, Jonathan D. [2 ]
Ek, Michael B. [3 ]
Wood, Eric F. [4 ]
机构
[1] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA
[2] UC, Dept Civil & Environm Engn, Davis, CA USA
[3] NOAA, EMC, NCEP, College Pk, MD USA
[4] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
关键词
SENSITIVITY-ANALYSIS; ETA-MODEL; LAYER; PREDICTION; MOISTURE; SCHEMES; DROUGHT; WEATHER; DATASET; IMPACT;
D O I
10.1002/2016JD024821
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of modelparameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (r(s,min)), the Zilitinkevich empirical constant (C-zil), and the bare soil evaporation exponent (fx(exp)). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
引用
收藏
页码:13218 / 13235
页数:18
相关论文
共 50 条
  • [21] Evaluating Common Land Model Energy Fluxes Using FLUXNET Data
    Xiangxiang ZHANG
    Yongjiu DAI
    Hongzhi CUI
    Robert E.DICKINSON
    Siguang ZHU
    Nan WEI
    Binyan YAN
    Hua YUAN
    Wei SHANGGUAN
    Lili WANG
    Wenting FU
    AdvancesinAtmosphericSciences, 2017, 34 (09) : 1035 - 1046
  • [22] Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China
    Ting Hou
    Yonghua Zhu
    Haishen Lü
    Edward Sudicky
    Zhongbo Yu
    Fen Ouyang
    Stochastic Environmental Research and Risk Assessment, 2015, 29 : 1383 - 1401
  • [23] Parameter sensitivity analysis and optimization of Noah land surface model with field measurements from Huaihe River Basin, China
    Hou, Ting
    Zhu, Yonghua
    Lu, Haishen
    Sudicky, Edward
    Yu, Zhongbo
    Ouyang, Fen
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (05) : 1383 - 1401
  • [24] An Empirical Latent Heat Flux Parameterization for the Noah Land Surface Model
    Godfrey, Christopher M.
    Stensrud, David J.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (08) : 1696 - 1713
  • [25] Implications of land-cover misclassification for parameter estimates in global land-surface models: An example from the simple biosphere model (SiB2)
    DeFries, RS
    Los, SO
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1999, 65 (09): : 1083 - 1088
  • [26] Using NHDPlus as the Land Base for the Noah-distributed Model
    David, Cedric H.
    Gochis, David J.
    Maidment, David R.
    Yu, Wei
    Yates, David N.
    Yang, Zong-Liang
    TRANSACTIONS IN GIS, 2009, 13 (04) : 363 - 377
  • [27] Compact Model Parameter Extraction using Bayesian Machine Learning
    Bhat, Sachin
    Kulkarni, Sourabh
    Moritz, Csaba Andras
    2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2023, : 247 - 252
  • [28] EIS equivalent circuit model prediction using interpretable machine learning and parameter identification using global optimization algorithms
    Zhao, Zhaoyang
    Zou, Yang
    Liu, Peng
    Lai, Zhaogui
    Wen, Lei
    Jin, Ying
    ELECTROCHIMICA ACTA, 2022, 418
  • [29] Improving Noah land surface model performance using near real time surface albedo and green vegetation fraction
    Yin, Jifu
    Zhan, Xiwu
    Zheng, Youfei
    Hain, Christopher R.
    Ek, Michael
    Wen, Jun
    Fang, Li
    Liu, Jicheng
    AGRICULTURAL AND FOREST METEOROLOGY, 2016, 218 : 171 - 183
  • [30] Integration of a Groundwater Model to the Noah Land Surface Model for Aquifer-Soil Interaction
    Samuel, Jerry B. B.
    Chakraborty, Arindam
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (07)